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Tonic sensory pathways of the respiratory system. Y. Jarnmes. 
ABSTRACT: .Both respiratory centres and the preganglionic vagal motoneu­
rones, which control respiratory (s triated) and airway (smooth) muscles 
respectively, receive information on the lungs, the circulation and the skeletal 
and respiratory muscles. Each of these nervous pathways has two components: 
one is phasic, i.e. in phase with biological rhythms, and comes from 
mechanoreceptors connected to large myelinated fibres; the second b.as a tonic 
low frequency firing rate and corresponds to the spontaneous activity of 
polymodal receptors connected to thin sensory fibres, which act mostly as 
sensors of changes in extracellular flujd composition (0~ and/or C01 partial 
pressure, pH, release of algesic agents etc ... ). Some of them also detect large 
mechani.cal dist·urbances or local temperature changes. T he influence of tonic 
background sensory activity is well known in animals concerning the ro·le played 
by arterial chcmoreceptors in the control of ventilation and of thin vagal 
afferents from the lungs (bronchopulmonary C-tibres and irritant receptors) in 
reflex facilitation of the bronchoconstrictor vagal tone. Moreover, the 
stimulation of thin sensory fibres in particular circumstances is responsible for 
hyperventilation (arterial chemoreceptors and muscle afferents), increased 
airway tone (arterial chemoreceptors and mostly thin vagal afferent fibres) or 
bronchodilation (muscle afferents). These peripheral inputs project centrally on 
different structures and also on brain stem neurones, which integrate 
simultaneously chemosensory, vagal and muscle information. This results in 
complex interactions between the different sensory pathways. 
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There are two closely connected motor pathways in 
the respiratory system. The first has its origin in the 
brain stem neurones which control breathing rhythm 
and tidal volume. The second arises in the pregan­
glionic vagal motoneurones, located in the nucleus 
ambiguus and the dorsal motor nucleus of the vagus 
nerve, which control airway smooth muscle tone. 
Both motor pathways receive peripheral afferents, 
with information concernjng the mechanical and 
chemical state of the lungs (afferent vagal fibres), the 
efficiency of circulation and respiratory gas exchanges 
(arterial baro and chemoreceptors) and the strength 
of contraction in respiratory and other skeletal 
muscles (muscle or somatic afferents) (fig. 1). This 
constitutes numerous and complex feed-back reflex 
loops, allowing the adaptation of ventilation and 
perhaps also of inspired air distribution to various 
physiological circumstances. 

Each of the visceral and somatic sensory pathways 
has two components. One is modulated in phase with 
biological rhythms (tida l lung inflation, systolic blood 
pressure. isotonic muscular contraction). These pha­
sic inputs have a high peak fi ring rate, 100 c ·s - • fo r 
muscle spi ndles as for vaga l lung receptors [43) and 
aie from mecha noreceptors connected to large myeli­
nated (i.e . fast conducting) fibres (pulmonary stretch 
receptors, arterial baroreceptors, muscle propriocep­
tors as muscle spindles and Golgi tendon organs). 

They display a very slow adaptation in response to a 
sustained mechanical stimulation. 

The second sensory component has a tonic low 
frequency firi ng rate (less than 4 or 5 c · s - l ), 

sometimes inconsistently related to the respiratory 
cycle (lung receptors) or to rhythmic but strong or 
isometric muscular contractions (muscle atferents). 
This corresponds to the spontaneous activity of 
receptors which are free nerve endings connected to 
slow conducting fibres, i .e small myelinated ( l - 6 !liD) 
and mostly unmyelinated fibres (0.2- 1.8 !liD) (lung 
irritant receptors, bronchopulmonary vagal C-fibres, 
arterial chemoreceptors, group III and IV muscle 
fibres) . Afferent unmyelinated fibres, which are called 
C-fibres in the vagus nerve and group IV fibres in 
somatic nerves, constitute 90% of sensory pulmonary 
vagal fibres (19] and at least 50% of carotid sinus or 
aortic chemosensory fibres [12] and skeletal or 
diaphragmatic afferents [10, 49]. As shown in figure 2, 
small myelinated sensory fibres, called B-fibres in the 
vagus nerve (lung irritant receptors) and group ill 
fibres in muscle nerves, constitute a very small 
proportion of total afferent fibres in each nerve. 

The present paper will be focused on the circum­
stances of the activation of thin afferent fibres, their 
role in control of ventilation and bronchomotor tone, 
and their central projections and interactions. Most 
of the data reported here concerns vagal and muscle 
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Fig. l. Schematic representation of the respiratory control sys­
tem, including both motor drives to respiratory muscles (muscle 
.efferents) and smooth airway muscles (vagal efferents)) and the 
three main origins of sensory information. 

fibre diameter,l-1m 

Fig. 2. Histograms of fibres obtained from electron micrographs 
in two sensory nerves (cats). Bronchial vagal branches are sampled 
after degeneration of vagal motor fibres and the tibial posterialis 
muscle is a sensory nerve. Open areas correspond to unmyelinated 
.fibres (C-fibres for the vagus nerve and group IV fibres for somatic 
·nerves) and dashed areas indicate myelinated fibres [redrawn from 
17 and 49]. 

afferents, but we add some recent information on the 
role played by chemosensory inputs in the broncho­
rnotor control and their interactions with vagal and 
somatosensory pathways. 

Electrophysiologica/ characteristics and stimuli of thin 
fibres 

Tonic sensory pathways result from the spontane­
ous, low frequency discharge or the activation of 
rapidly adapting receptors. Most of them are polymo-

dal receptors, which respond to mechanical, chemical 
and thermal stimuli. In general, normal tidal volume 
changes (4, 9] and isotonic contractions of skeletal 
(35] and respiratory muscles [24] are insufficient 
mechanical stimuli for these receptors. However, a 
subpopulation of small myelinated units are more 
sensitive to mechanical events than unmyelinated 
fibres. For example, lung irritant receptors increase 
markedly their activity when tidal volume or airflow 
rate or both increase and they are also excited by 
deflation of the lungs [4]. In addition, more than 40% 
of group III muscle fibres are low-threshold pressure­
sensitive units, also activated during sustained tetanic 
contractions, compared to only 20% of group IV 
fibres [35]. Unmyelinated afferent fibres are particu­
larly sensitive to chemical stimulation. Thus, vagal 
bronchopulmonary C-fibres are strongly stimulated 
by chemicals formed and released in the lungs in 
pulmonary anaphylaxis (histamine, serotonine, bra­
dykinin, prostaglandins) [4]. 

Recent data also show that a large proportion of 
bronchopulmonary C-fibre afferents reflect the C02 
content of mixed venous blood and expired gas [9, 
42]. However, due to the very rapid adaptation of 
their discharge, only the peak firing frequency is 
proportional to the magnitude of C02 load [9] (fig. 3). 
This serves to distinguish them from arterial chemore­
ceptors which display a tonic and very slow adapting 
response to hypoxaernia or hypercapnia [31]. 

Group III and IV muscle afferents from skeletal 
muscles (35] and diaphragm [15, 24] are also sensitive 
to changes in the chemical composition of the 
extracellular space (osmolarity, pH, algesic agents) 
(fig. 4). Hypoxia has no effect on lung vagal sensory 
fibres [9] and its effect on group III and mostly group 
IV muscle fibres seems to result from consecutive 
acidosis [15, 29] (fig. 5). 

FinaJly, many thin fibre afferents, especially unmy­
elinated fibres, are influenced by temperature. There 
are warm-sensitive vagal units in the lower trachea 
and intrapulmonary airways, activity of which is 
markedly reduced or abolished by cooling the 
inspired air from 35 to 30 oc [9] (fig. 6A). On the 
other hand, cold-sensitive units, with a threshold 
temperature of around 22 °C, have recently been 
identified in the superior laryngeal nerve [27] (fig. 
6B). These latter behave like specific thermorecep­
tors because they are not activated by mechanical 
stimulation but only by cold and by injection of 
drugs. Similarly, both warm and cold-sensitive group 
IV units are present in afferents from skeletal muscles 
[35] and exhibit a response behaviour very similar to 
that of specific thermoreceptors in the skin. 

Functional role of thin fibre afferents 

The functional role of tonic sensory pathways can 
be analysed by examining either the effect of 
spontaneous background activity or the effect of 
increased discharge of thin fibre afferents on the 
ventilatory and bronchomotor controls. 
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Fig. 3. Fast adapting response of a bronchial vagal C-fibre to a sustained increase in inspired C02 concentration (cats). From top to bottom 
are the spontaneous discharge frequency of a single vagal C-fibre and expired C02 concentration measured with a rapid analyser [9]. Fco2; 
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Fig. 4. Response of group IV phrenic sensory fibres to retrograde injection of lactic acid, hypertonic NaCI solution or phenyldiguanide 
(PGD) into the common carotid artery in cats. In each panel are shown: a raw multiunit recording of thin afferent fibres, identified from 
measurement of conduction velocity, and impulse rate of selected units. Horizontal bars indicate the duration of drug injection [simplified 
from 24]. 

Influence of tonic background sensory activity. The 
tonic background from arterial chemoreceptors cer­
tainly exerts a facilitatory influence on the respiratory 
centre activity [7, 50). However, there are contradic­
tory results concerning the ventilatory effects of 
background activity in lung irritant receptors and 
bronchopulmonary vagal C-fibres. All data have 
been obtained in studies using differential vagal cold 
block or local nerve anaesthesia during eupnoea. 

Some authors attribute the control of ventilatory 
timing to both phasic and tonic vagal activities [5, 
40]. Others attribute the adjustment of spontaneous 
respiratory frequency only to phasic, volume-related 
vagal information [16, 23]. Then, the tonic vagal 
sensory background seems to exert only an inhibi­
tory influence on the recruitment of inspiratory 
neurones during eupnoea, as revealed by an increase 
in integrated phrenic activity during selective pro-
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Fig. 5. Activation of group JV phrenic sensory fibres during 
diaphragmatic ischemia produced by aortic occlusion in cats. From 
top to bottom are shown: raw recording of phrenic sensory fibres; 
impulse rate of discriminated units; integrated diaphragma tic EMG 
and arterial blood pressure (P.) recorded fwm a femoral artery 
[15). 
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Fig. 6. Examples of warm and cold-sensitive sensory units 
recorded in the vagus nerve or in the superior laryngeal nerve in 
cats. Warm-sensitive units are identified as coming from the trachea 
and display an optimal spontaneous firing rate wi thin the normal 
temperature range measured in the cervical trachea [9). Cold­
sensitive units are recorded in the superior laryngeal nerve, 
supplying the larynx and the upper part of the cervical trachea; 
their spontaneous discharge increases when the inspired temper­
ature falls below 20-22 •c [redrawn from 27]. In each panel are 
shown the discharge frequency of single units, recorded using glass 
microelectrodes from the nodose vagal ganglion, and the temper­
ature of inspired gas. 

caine block of conduction in thin vagal fibres (fig. 7) 
[23]. 

More convergent results are obtained on the effect 
of background tonic vagal activity on the broncho-
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Fig. 7. Integrated molor phrenic activity (Ephr) measured during 
spontaneous breathing: I) in intact cat~; 2) after procaine block of 
conduction in thin vagal fibres; 3) after bivagotomy. This allows 
successive suppression of background tonic sensory vagal pathway 
(curve 2), then phasic volume-related vagal information (curve 3). 
Each curve is an average of I 00 breaths sampled in the same animal 
[23] . 

motor tone. Thus, the differential cold block of vagal 
conduction in large myelinated vagal fibres at 7-8 oc 
unmasks excitatory effects on airway smooth muscle, 
exerted by thin vagal afferents [41]. On the other 
hand, procaine block of conduction in thin vagal 
fibres abolishes the bronchoconstrictor vagal tone in 
cats (fig. 8) [17]. In addition, selective sensory 
vagotomy at the level of nodose ganglion lowers the 
value of total lung resistance (fig. 8) [17] and the 
section of pulmonary vagal branches reduces or 
abolishes the tonic discharge of preganglionic vagal 
motoneurones [3]. It seems likely that vagal broncho­
constrictor tone depends on facilitatory influences 
carried by afferent vagal C-fibres. As Coleridge (4] 
said 'the afferent vagal C-fibres supplying the lower 
airways can no longer be regarded simply as a high­
threshold afferent system whose influence is exerted 
only in situations that threaten well-being'. 

The results are less obvious concerning the ventila­
tory influence of background tonic sensory activity in 
somatic and mostly muscle nerves. All studies have 
been performed in anaesthetized animals, thus ex­
cluding the possible influence of skeletal muscle 
afferents activated during the postural muscle tone. 
Controversial data have been reported concerning 
changes in spontaneous breathing pattern following 
spinal cord section or selective thoracic dorsal 
rhizotomy, which suppresses chest wall but not 
phrenic afferents [14, 25, 48]. Moreover, these effects 
of background somatosensory pathway depend on 
the type of anaesthesia and mostly on the integrity of 
vagal afferent information [25]. 

The importance of such interactions between 
visceral and somatic inputs will be discussed below.ln 
fact, we may suppose that group III and IV muscle 
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Fig. 8. Decrease in total lung resistance (RL) measured in cats 
breathing spontaneously after selective sensory vagotomy at the 
level of vagal nodose ganglion (left part) or procaine block of 
conduction in thin vagal fibres (right part). The selectivity of 
blockade is assessed by the suppression of the compound C wave 
(unmyelinated fibres) with persistency of the A and B (myelinated 
fibres) in the: vagal evoked potentials {redrawn from 17]. 

alferents are not active during isotonic spontaneous 
contractions of respiratory muscles. This is confirmed 
by the observation that procaine block of thin afferent 
phrenic fibres does not alter the breathing pattern but 
cold block of large phrenic fibres (i.e. mostly Golgi 
tendon organ afferents) lowers the respiratory fre­
quency and the firing rate of phrenic motoneurones 
(fig. 9) [24). 

Reflex effects of enhanced tonic sensory activity. Reflex 
ventilatory and bronchomotor effects of stimulation of 
thin sensory fibres are well documented in particular 
circumstances. Stimulation of arterial chemoreceptors 
by hypoxaemia or hypercapnia increases both tidal 
volume and mean inspiratory flow [7, 37] and also the 
airway smooth muscle tone [22], due to reflex 
activation of vagal motor fibres (fig. I 0) [3]. Stimu­
lation of thin vagal afferents, particularly bronchopul­
monary C-fibres, increases the airway tone [4, 22] as 
well as the secretion by tracheal submucosal glands 
[45]. These effects participate in the airway defence 
reaction but are also found when aJveolar C02 
concentration increases in cats and dogs [8, 22]. 

The results concerning the associated ventilatory 
response are somewhat contradictory. Thus, there is 
controversy whether lung irritant receptors, which 
constitute only 4% of vagal lung sensory fibres, 
participate in the rapid shallow breathing response 
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Fig. 9. Effects of sctecllve block of conduction in group I (large 
myelina ted) phrenic fibres (cold block at 7 QC) or in group IV (thin 
unmyelinated) phrenic fibres (proc!tine block) on the contralateral 
motor phrenic discharge (cats). Blockade of thin sensory phrenic 
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Fig. 10. Reflex increase in activity of vagal motoneurones recorded 
near the pulmonary hilum during inhalation of hypercapnic gas 
mixture (cats under artificial ventilation). Two short periods of 
asphyxia arc also produced by stopping the ventilatory pump 
{horizontal bars). Lung dcncrvution is performed by sectioning all 
pulmonary vugal brancheS. thus the observed effects result only from 
the stimulation of arterial andfor central chemoreceptors. From top 
to bottom: impulse rate of motor vagal fibres (multiunits recording); 
integrated motor phrenic activity and C02 concentration in expired 
gas (FC02) (unpublished observation). 
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after administration of histami.ne or antigen [36], 
because this response survives selective cold blockade 
of all myelinated vagal fibres and then becomes even 
more pronounced [13]. By contrast, the stimulation of 
vagal C-fibres by chemicals such as phenyldiguanide 
or capsaicine, or by substances released during the 
inflammatory reaction, produces an initial apnoea 
followed by rapid shallow breathing (4]. The stimu­
lation of lung vagal C-fibres during inhalation of 
C02-enriched gas mixture may explain the ventilatory 
response described in birds [2] and mammals [1] in 
experimental circumstances of cardiopulmonary by­
pass. This response is abolished by bivagotomy and 
has been attributed to the stimulation of vagal C­
fibres [42]. 
· Recent observations also show that the stimulation 
of thin vagal afferent fibres by deflation of the lungs, 
acetylcholine- or histamine-induced bronchospasm, 
or injection of phenyldiguanide produces tonic con­
traction of inspiratory muscles and tonic phrenic 
discharge [26]. Stimulation of group III and IV fibres 
from hindlimb muscles [34) or diaphragm [24) also 
induces tachypnoea with an inconstant increase in 
tidal volume. However, the activation of thin muscle 
fibres reflexly decreases total lung resistance to airway 
smooth muscle [30, 33], the opposite effect of 
activation of thin vagal fibres and arterial chemore­
ceptors. 

Central projections and interactions 

Vagal and arterial chemoreceptor afferents project 
directly onto the nucleus tractus solitarius (NTS), 
which is closely connected to dorsal respiratory group 
.neurones and preganglionic vagal motoneurones [44]. 
However, thin afferent fibres from skeletal and 
respiratory muscles ascend via the lateral funiculus of 
the spinal cord and project onto the medulla [47), the 
cerebellar cortex [II , 39] and also the sensorimotor 
cortex [6]. Recent data also show that the central 
integration of muscle afferents during static muscular 
contraction needs the integrity of the subthalamic 
·locomotor region [51]. In the medulla muscle fibre 
afferents seem to project onto the same respiratory 

.,neurones which integrate vagal and chemoreceptor 
'Inputs (47]. This is also supported by the observation 
that the ventilatory effects of spinal cord section 
depend on the integrity of vagal afferents (25] and that 
:the ventilatory response to vagal or chemostimulation 
is reduced or even abolished when respiratory muscle 
afferents are strongly stimulated (fig. 1 1) (20, 21]. 
Such interactions between somatic or visceral infor­
mation may involve thin muscle fibre afferents, which 
are stimulated in these experimental conditions, 
producing quasi-isometric contractions of respiratory 
muscles against high external loads. Moreover, the 
selective activation of muscle proprioceptors includ­
ing muscle spindles does not modify the ventilatory 
'response to hypercapnia (18]. 

A viscero-somatic reflex loop also exists between 
pulmonary vagal C-fibres and the alpha and fusimo-
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Fig. II. Interactions between somatic afferents from respiratory 
muscles and vagal or chemosensitive afferents in dogs under 
cardiopulmonary bypass breathing against high expiratory thresh· 
old loads (ETL). In the upper diagram, the apnoeic response to 
lung hyperinftation, expressed by plotting the inhibitory ratio 
(TtffO) against changes in lung volume (~Vl) is abolished after 10 
min of ETL breathing from [20]. In the lower diagram, increase in 
integrated diaphragmatic EMG (Edi) due to C02 rebreathing 
disappeared during ETL breathing [21] (Dashed line: control; Solid 
line: ETL breathing). 

tor drives to the skeletal muscles [38, 46]. The 
functional significance of this complex reflex is not 
clear as it needs the integrity of the central structures 
lying just below the cerebral cortex [28). PAINTAL [38] 
has proposed that the stimulation of pulmonary 
C-fibres by increased pulmonary arterial pressure 
and/or C02 flux during supramaximal exercise exerts 
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an inhibitory influence on the cortico-spinal tracts 
which control the strength of muscular contraction. 

The question remains, whether the respiratory 
centres differentiate phasic or tonic inputs from 
visceral and somatic afferents. One hypothesis is that 
central neurones integrate particular patterns of 
afferent discharge, i.e. tonic low frequency discharge 
of rapidly adapting receptors or phasic high fre­
quency firing rate of slowly adapting mechanorecep­
tors. Another hypothesis is that central structures 
may detect different neuromediators released by 
sensory fibres. Evidence for the latter is that substance 
P is released by unmyelinated sensory fibres but not 
by large myelinated fibres [32]. 

In conclusion, both ventilatory control of respira­
tory muscles and vagal motor drive to the lungs 
depends on the central integration of both visceral and 
somatic inputs. This results from the summation of 
phasic and tonic sensory pathways and some of these 
peripheral inputs provide antagonistic influences. 
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RESUME: Tanl les centres respiraloires que les motoneurones 
vagaux preganglionnaires qui controlent respectivement les muscles 
respiratoires (stries) et les muscles des voies aeriennes (lisses) 
re~oivent des informations sur lcs poumons, Ia circulation et les 
muscles squelettiques et respiratoires. Chacune de ces voies 
nerveuses a deux composantes; l'une est phasique, liee aux rythmes 
biologiques et provient des mecanorecepteurs connectes aux 
grosses fibres myelinisees; !'autre est tonique avec des decharges a 
basse frequence, correspondant a l'activite spontanee des recep­
teurs polymodaux connectcs aux petites fibres sensitives, qui 
agissent principalement comme senseurs des changements dans Ia 
composition des Iiquides extraccllulaires (pression partielle d'02 
etjou de C02, pH, liberation d'agents algesiques, etc ... ). Certains 
d'entre eux detectent egalement des changements mecaniques de 
grande amplitude ou de temperature locale. L'influence de l'activite 
tonique sensitive basale est bien connue chez !'animal en ce qui 
concerne le role joue par les chemorecepteurs arh~riels dans le 
controle de Ia ventilation et par les petites fibres vagales afferentes 
d'origine pulmonaire (fibre C et recepteurs a !'irritation) dans Ia 
facilitation d'origine reflexe du tonus vagal bronchoconstricteur. 
De plus la stimulation de ces petites fibres sensitives dans certaines 
circonstances est responsable d'une hyperventilation (chemorecep­
teurs arteriels et afferences musculaires), d'un augmentation du 
tonus des voies aeriennes (chemorecepteurs et principalement 
fines fibres vagales afferentes) ou d'une bronchodilatation (affer­
ences musculaires). Ces influx peripheriques projettent sur diverses 
structures centrales ainsi que sur les neurones du tronc cerebral qui 
integrent simultanement !'information provenant des chemorecep­
teurs, du nerf vague et des muscles. II en resulte des interactions 
complexes entre les differentes voies sensitives. 




