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ventilation after the initial increase, when the arterial
CQ, tension is not kept constant (fig. 1). It follows
from the steady-state solution of the respiratory
control system [21, 22, 31, 57] that, during moderate
hypoxia, only a small increase in ventilation would
occur. This increase may be too small to be detected,
because of unavoidable scatter in the data. A change
in ventilation also depends on whether the metabolic
CQO, production and the dead-space ventilation
change. Several authors have shown that, in
newborns who arc not kept at a thermoneufral
temperature, metabolic rate decreases due to hypoxia
[10, 20, 37, 61, 62, 68)]. This decrease in metabolic rate
contrasts with the absence of change in adult animals
exposed to the same hypoxic stimulus [20]. Only in
adult small animals is a decrease of metabolism also
observed [37]. As a result, steady-state ventilation
may be lower than the prehypoxic value in newborns
or small animals not kept at the thermoneutrai level.
Changes in dead-space ventilation due to alterations
in breathing frequency or changes in the ventilation-
perfusion ratio in the lung also ultimately determine
gas exchange. In some newborns, breathing {requency
in the steady-state is lower during hypoxia than in
notmoxia [8, 33, 73, 75)], so that dead-space ventila-
tion may be lower. Changes in metabolic rate and
dead-space ventilation, together with a decrease in
arterial CQ;, tension, may partly explain the unaltered
or even dimimished ventilation in newborns in the
steady-state during hypoxia. Thus no firm conclu-
sions about the physiological mechanisms can be
drawn from non-isocapnic studies. By keeping the
arterial CQ, constant during the induction of hy-
poxia, changes in metabolic rate and dead-space
ventilation cannot contribute to the development of
the biphasic response in ventilation.

2.3.2. Isocapnic studies

When hypoxia is induced isocapnically, ventilation
increases rapidly (fig. 1). In anaesthetized cats this
increase is followed by a decrease and a new steady-
state is reached in about 1( min {3, 24]. The early rise
in ventilation is due to stimulation of the periphcral
chemoreceptors, while the secondary fall in ventila-
tion must be of central origin since it was absent when
the brainstem was kept hyperoxic by artificial
perfusion [24]. Sudden isocapnic relief of hypoxia
shows an undershoot in the ventilatory response. We
are unaware of similar studies in other animals. In
man, Swanson e al. [85] reported that two out of
their six subjects, when subjected to an end-tidal PO,
of 7 kPa for 5 min, slowly developed a secondary fall
in ventilation. Rapid induction of progressive isocap-
nic hypoxia, followed by rapid relief, shows a
hysteresis in the ventilatory response, which is
thought to be caused by a depressant eflect ol hypoxia
92]. WEIL and ZwiLLicH [91] reported a 25%
lecrease in minute ventilation in man, compared to
he early rise after 10 min of isocapnic hypoxia (PAo,
y kPa). In the studics of KaGawa et al. [45] and

EASTON et al. [26}, all subjects showed an appreciable
secondary fall in ventilation starting after about 5
min. It is interesting that, im man, ventilatory
depression develops much more slowly than in cats;
hence, a secondary fall in ventilation is not manifest
in most experiments on adult humans when hypoxia
1¢ induced for five to ten min only [72].

There are few reports on studies in which hypoxia is
induced isocapnicailly in newborns. In anaesthetized
and vagotomized piglets, three to five days old,
phrenic nerve activity first increased to 180% of
control after a change in Pao, from 46 to 4.4 kPa, but
theteafter phrenic nerve activity returned to a mean
value of 104% of control [53]. In newborn human
babies (6 h to 11 days), BrRaDY and Cerut [11]
observed that there was an initial increase in
ventilation with hypoxia during the first minute, but
that during the second and third minutes, ventilation
decreased. In older babies (13 days), a greater and
sustained increase in ventilation was seen [11]. Taken
together, the biphasic response to hypoxia of
newborns and adults appears therefore to differ only
quantitatively. To further study the effects of hypoxia
on ventilation, it is essential to quantitatively separate
central and peripheral effects. Development of the
non-invasive dynamic end-tidal forcing technique for
isocapnic changes in O, tension would furnish a
valuable tool in this respect. Briefly, with this
technique, the inspired gas is manipulated so that the
end-tidal O, tension is forced to follow a prescribed
pattern (e.g. square wave) in time, keeping the end-
tidal CQ, tension constant. The ventilatory response,
measured on a breath-by-breath basis, is then
separated into a slow and fast component, using an
appropriate mathematical model (see [24]).

3. Depressant eflects of hypoxia

Most of the evidence for a central depressant effect
of hypoxia in man stems from indirect studies in
which the time course of the ventilatory response to
hypoxia is followed ({26, 41, 45, 91, 92]; see section
2.3.2.}. Occasionally in man, the steady-state ventila-
tion in response to isocapnic hypoxia is even lower
than the prehypoxic value [4]1, 45]. Some volatile
anaesthetics are known to depress the peripheral
chemoreflex in man. For instance, halothane at a
concentration of 1 MAC (minimum anaesthetic
concentration) nearly abolishes the response of the
peripheral chemoreceptors to hypoxia [47]; ventila-
tion diminishes when going to hypoxia. This may be
due to the central depressant effect of hypoxia on
ventilation. More direct evidence is obtained from
animal experiments in which the peripheral chemore-
ceptors are denervated (section 2.1.) or isolated
structures are perfused {section 2.2.). It is not clear at
which level of hypoxia depression of ventilation
occurs. In the perfusion experiments of VaN BEEK et
al. [2], in which hypoxia was exclusively applied to the
pons and medulla oblongata, hypoxic depression was
found at light levels of hypoxia (Pac, 1¢ kPa). In
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washout of CO, by an increase in CBF. We wish 1o
mark that the finding aficr an application of
rpoxia, an additional hypoxic change still elicits a
-ansient) increase in ventilation cannot be used as an
gument against central neural depression [13], since
;pression of respiratory neurons does not neeessarily
iply that a further challenge has no stimuilatory
fecl.

In newborns, hypoxia may influence lung mechan-
i [50, 51] and thus influence the retationship between
ttput from the integrating respiratory centres and
ntilation. LAFraMBOISE e al. [51] have recently
own that mouth occlusion pressure at 200 ms, an
dex of central output, remains etevated throughoui
e hypoxic response, although the ventilation
owed a biphasic response with hypoventilation in
e second phase.

There is some evidence that the peripheral chemo-
reflex adapts during steady-state hypoxia. In newborn
lambs, removal of a hypoxic stimulus induces less
decrease in ventilation when the preceding hypoxia
was induced by a steady-state method than by
progressive hypoxia [13]. There is recent evidence
from experiments in lambs that, in the first hours after
birth, there is a resetting of hypoxic sensitivity. A few
days after birth, spontaneous chemoreceptor dis-
charge in normoxia is similar to that of adult animals
{7, 8]. In adult man the abrupt induction of hypoxia
for 25 min gives rise to a much bigger overshoot in
ventilation than removal of the same stimulus [26],
although it should be remarked that the ventilatory
off-response in the study of EasToN et al. [26] was
onty followed up for about 5 min.

5. Concluding remarks

Over the years, a considerable amount of work has
been done on the cflects of hypoxia on ventilation. Tt
has been established that hypoxia stimulates ventila-
tion both through the peripheral chemoreceptors and
through a central mechanism which is unmasked in
the unanacsthetized state after peripheral chemo-
denervation. Besides these stimulatory effects, brain
hypoxia depresses ventifation. A number of mechan-
isms have been proposed to play a role in the cerebral
effects of hypoxia on ventilation. However, opinions
are divided about the importance of these mechan-
isms, This situation is partly due to a lack of well
designed experiments from which the importance of
the proposed mechanisms can be inferred. For
instance, this has led to the erroneous notion that the
biphasic response of ventilation to hypoxia is a
unique feature of newborns. Future work should be
directed iowards gquantitative assessment of the
contribution of the several suggested mechanisms
during different physiological conditions. Measure-
ment of the response to hypoxia in newborns under
isocapnic conditions should provide valuable infor-
mation, although, as aptly summarized by RiGaTTO
[76], the technical facilities and the experimental
difficulties of performing experiments on newborn

infants are formidable. [t would be very interesting to
further develop the dynamic end-tidal forcing tech-
nique for isocapnic changes in O, tension, in order to
separate central and peripheral effects of hypoxia.
This will greatly improve our understanding of the
role of hypoxia in ventilation.
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