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ABSTRACT: In the vascular system, synthesis of the potent vasodilator nitric oxide
(NO) is tightly regulated by the constitutively expressed endothelial NO synthase
(eNOS). Activity of eNOS is controlled by Ca2z/calmodulin and various seryl/threonyl
protein kinases. Less is known about the importance of phosphorylation and
dephosphorylation of tyrosyl residues. Therefore the role of tyrosine phosphatase on
the modulation of isolated rat pulmonary artery tone has been assessed. Inhibition
of tyrosine phosphatase by sodium orthovanadate (SOV, 1610-6 M) significantly:
1) increased phenylephrine-induced vasoconstriction and 2) decreased endothelium-
dependent relaxation to acetylcholine, but had no effect on endothelium-independent
relaxation to the NO donor, sodium nitroprusside. In phenylephrine-precontracted
pulmonary arterial rings, SOV (1610-7–1610-5 M) had no effect on vascular tone
but significantly relaxed rings which were pretreated with the NO-synthase inhibitor,
Nv-nitro-L-arginine-methyl ester (L-NAME). SOV-induced relaxation in the presence
of L-NAME was, however, abolished by glibenclamide.
In conclusion, inhibition of tyrosine phosphatase altered pulmonary vascular tone by

increasing vasoconstrictor response to phenylephrine and decreasing endothelium-
dependent relaxation to acetylcholine. Furthermore, the tyrosine phosphatase inhibitor,
sodium orthovanadate, exhibited original vasodilator properties which were only
observed when nitric oxide synthesis was inhibited. Thus a new pathway involving
the inhibitory effect of nitric oxide on a glibenclamide-sensitive diffusible relaxing
factor, that might play an important role in the control of pulmonary vascular tone is
described.
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Publique-Hôpitaux de Paris, Université
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Pulmonary vascular tone is modulated by a
variety of endothelium-derived relaxing factors
including prostacyclin, nitric oxide (NO) [1, 2], and
the endothelium-derived hyperpolarizing factors
(EDHF) [2, 3]. NO is one of the most potent
vasodilators known to date. Its synthesis is tightly
regulated by intracellular free Ca2z and the Ca2z/
calmodulin complex that, in turn, stimulate the
constitutive isoform of endothelial NO synthase
(eNOS). Alternatively, phosphorylation on seryl and
threonyl residues by various seryl/threonyl kinases
is also thought to modulate eNOS activity [4, 5].

Shear stress is the major physiological factor
modulating pulmonary vascular tone in health and
disease. The underlying mechanism most likely
involves synthesis and release of NO from pulmonary
endothelial cells. Recent evidence suggests that endo-
thelial production of NO is increased in response to
shear stress through tyrosine phosphorylation via
a calcium-independent pathway in the systemic
circulation [4, 6]. Contradictory studies alternatively

suggest that tyrosine phosphorylation of eNOS might
also reduce its activity [7]. Whether or not altera-
tion of phosphorylation and/or dephosphorylation
of tyrosyl residues of eNOS affects its activity in
the pulmonary artery has yet to be investigated.

In various vascular beds, EDHF causes relaxation
through vascular smooth muscle hyperpolarization
[3]. The identity of EDHF is still under debate. Early
evidence has suggested that adenosine triphosphate
(ATP)-dependent potassium (KATP) channels are
activated by EDHF [8–10], whereas recent evidence
further suggests that EDHF is a product of cyto-
chrome P-450 enzymes [11, 12] which cause relaxation
by activating large conductance calcium-activated
potassium (KCa) channels [11–13]. The physiological
role of EDHF in pulmonary vessels is still uncertain,
although there is circumstantial evidence to suggest
that EDHF might play an important role in transi-
tional pulmonary circulation [14].

The aim of this study was to further elucidate the
role of tyrosine phosphorylation in NO and EDHF
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signalling pathways in the pulmonary circulation. The
authors have more specifically studied the effect of
sodium orthovanadate (SOV), a tyrosine phosphatase
inhibitor, which has been demonstrated to activate
NOS through tyrosine phosphorylation-dependent
mechanisms in the systemic circulation [4, 15]. It
was found that SOV significantly altered pulmonary
vascular tone by reducing NO-mediated pulmonary
vasodilatation and increasing the vasodilator effects
of EDHF.

Materials and methods

Male Sprague-Dawley rats (250–275 g) were anaes-
thetized intraperitoneally with thiopental sodium
(80 mg?kg-1). The pulmonary arteries (PA) were
immediately dissected and placed in cold Krebs
solution: NaCl 118, KCl 5.9, MgSO4 1.2, CaCl2 2.5,
NaH2PCO4 1.2, glucose 5.6, NaHCO3 25.5 (nM). The
arteries were cleaned of perivascular tissue and cut
into rings 2.5 mm in length. The rings were suspended
between two wire hooks. One of the hooks was fixed
to a support in an isolated organ bath containing
20 mL of Krebs solution maintained at 37uC and
gassed with a mixture of 95% oxygen (O2) and 5%
carbon dioxide (CO2). Each vascular segment was set
at a resting tension for optimal length development
ranging from 0.7–1.0 g. The rings were then allowed
to equilibrate for 60 min. After equilibration, three
studies were performed.

Experimental studies

After contraction with phenylephrine (1610-7–
1610-6 M) to obtain a stable plateau of tension, the
rings were challenged with increasing concentrations
of acetylcholine (1610-7–1610-5 M). Sodium nitro-
prusside, a NO donor (1610-4 M), was added at the
end of the experiments to maximally relax pulmonary
vascular smooth muscle. PA rings were divided
into two groups, one group were treated with SOV
(1610-6 M) for 15 min, whereas the other group were
treated with the solvent (distilled water) and served
as controls. SOV was first added 15 min before
contraction to phenylephrine to study the effects of
SOV on phenylephrine-induced contraction.

In a separate set of experiments, SOV was added
after the plateau of contraction to phenylephrine
was reached, incubation with SOV then lasted for
15 min before endothelium-dependent relaxation to
acetylcholine (1610-7–1610-5 M) and endothelium-
independent relaxation to the NO donor, sodium
nitroprusside (1610-4 M), were assessed.

In a third set of experiments, the effects of
increasing concentrations of SOV (1610-7–1610-5 M)
on phenylephrine-precontracted pulmonary vascular
rings was assessed. The rings were divided into
three groups: 1) untreated; 2) treated with Nv-nitro-
L-arginine methyl ester (L-NAME) (1610-3 M); and 3)
treated with L-NAME (1610-3 M) and glibenclamide
(1610-5 M).

Drugs

All drugs were purchased from Sigma (Saint
Quentin-Fallavier, France). SOV, phenylephrine,
acetylcholine, sodium nitroprusside and L-NAME,
were dissolved in distilled water, whereas glibencla-
mide was dissolved in dimethyl sulphoxide which,
by itself had no effect on tone of isolated pulmonary
vessels.

Data analysis

The magnitude of contraction by phenylephrine
was expressed in mg (mean¡SEM), n is the number
of pulmonary vascular rings. Relaxation and contrac-
tion were expressed as the percentage decrease or
increase in tone from the plateau of precontraction
obtained with phenylephrine (1610-6 M). The mean¡
SEM of each set of experimental data were used to
construct the concentration-response curves to var-
ious pharmacological substances. Statistical analysis
was performed using the nonparametric Wilcoxon
signed-rank test to compare results obtained on rings
with and without endothelium that were challenged
with various inhibitors or agonists and their controls.
Values were considered statistically significant when
pv0.05.

Results

Sodium orthovanadate increased phenylephrine-
induced contraction

SOV (1610-6 M), by itself, had no contractile effect
on basal tone but significantly increased the magni-
tude of contraction in all PA rings (n=10) in response
to phenylephrine (1610-7 M) (614¡78 mg versus
745¡90 mg; pv0.001) and 1610-6 M (767¡102 mg
versus 960¡123 mg; pv0.0001).

In PA rings without endothelium, SOV (1610-6 M),
also significantly affected the contractile responses
to phenylephrine, increasing maximal tension from
851¡168 mg to 1010¡193 mg (in control and treated
rings, respectively; pv0.01).

Sodium orthovanadate reduced endothelium-dependent
relaxation to acetylcholine

In PA rings precontracted with phenylephrine
(1610-6 M) pretreatment with SOV (1610-6 M) sig-
nificantly decreased endothelium-dependent relaxa-
tion to acetylcholine (maximal relaxation 48¡9% in
treated PA rings versus 75¡8% in controls, pv0.05)
(fig. 1).

Endothelium-dependent relaxation in response to
sodium orthovanadate

Increasing concentrations of SOV (1610-7–
1610-5 M) had no significant relaxing effect on PA
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rings precontracted with phenylephrine (1610-6 M)
(fig. 2). However, pretreatment with L-NAME
(1610-3 M) caused relaxation of PA rings challenged
with increasing concentrations of SOV (21¡5%
versus 3¡2% for 1610-7 M, 28¡7% versus 5¡3% for
1610-6 M and 30¡8% versus 6¡4% for 1610-5 M,
pv0.05 respectively). L-NAME-induced endothelium-
dependent relaxation to SOV was completely abol-
ished by glibenclamide (1610-5 M) (fig. 2).

In PA rings without endothelium, SOV (1610-7–
1610-5 M) similarly failed to induce any relaxing
effect on PA rings precontracted with phenylephrine
(1610-6 M). However, unlike PA rings with endothe-
lium, neither L-NAME nor glibenclamide significantly

altered the lack of vasorelaxant effects of SOV in PA
rings without endothelium (fig. 3).

Effect of sodium orthovanadate on endothelium-
independent relaxation to sodium nitroprusside

In PA rings precontracted with phenylephrine
(1610-6 M), SOV (1610-6 M) had no effect on
endothelium-independent relaxation to the NO
donor sodium nitroprusside.

Discussion

It has been demonstrated that inhibition of tyrosine
phosphatase by SOV significantly altered pulmonary
vascular tone by increasing vasoconstrictor response
to phenylephrine and decreasing the endothelium-
dependent vasodilator response to acetylcholine.
As the increase in vasoconstrictor response to
phenylephrine was also present in PA rings without
endothelium, the procontractile effect of SOV would
be best explained by a direct action on pulmonary
vascular smooth muscle rather than putative release
of endothelial-derived vasoconstrictors.

As reported previously in systemic circulation,
inhibition of tyrosine phosphatase by SOV markedly
increased vasoconstrictor responses to phenylephrine
[16, 17]. This observation is consistent with the fact
that phosphorylation of tyrosyl residues by tyrosine
kinase is implicated in the mechanisms leading
to constriction of vascular smooth muscle [18–22].
Vasoconstriction occurs as a result of activation
of myosin light chain kinase (MLCK) that, in turn,
phosphorylates myosin light chain, thereby enabling
formation of actin-myosin cross bridges resulting in
vascular smooth muscle contraction [23]. The potent
tyrosine kinase inhibitor, genistein [24] significantly

0

20

40

60

80

100
R

el
ax

at
io

n 
 %

Baseline -7 -6 -5
Acetylcholine  Log M

Fig. 1. – Effect of sodium orthovanadate (SOV) on acetylcholine-
induced relaxation. Cumulative concentration-response curves
for acetylcholine were made in the rings pretreated with SOV
and in control rings. Relaxation was presented as percentage
of precontraction with phenylephrine (1610-6 M). Data was
expressed as mean¡SEM. n=8 each. $: control; #: with SOV
(1610-6 M).
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Fig. 2. – Effect of sodium orthovanadate (SOV) on pulmonary
arterial rings with endothelium in the presence of: u: Nv-nitro-L-
arginine-methyl ester (L-NAME) (1610-3 M, n=8); and h: a
combination of L-NAME (1610-3 M) and glibenclamide
(1610-5 M, n=7); q: control, n=8. Relaxation in response to SOV
(1610-7, 1610-6 and 1610-5 M) was expressed as percentage from
precontraction to phenylephrine (1610-6 M). Data was expressed
as mean¡SEM of n experiments. *: pv0.05; **: pv0.01.
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Fig. 3. – Effect of sodium orthovanadate (SOV) on pulmonary
arterial rings without endothelium in the presence of: u: Nv-nitro-
L-arginine-methyl ester (L-NAME) (1610-3 M); and h: a combi-
nation of L-NAME (1610-3 M) and glibenclamide (1610-5 M); q:
control. Response to SOV (1610-7, 1610-6 and 1610-5 M) was
expressed as percentage from precontraction to phenylephrine
(1610-6 M). Vasoconstriction was represented by positive values
whereas vasorelaxation was represented by negative values. n=4.
Data was expressed as mean¡SEM of n experiments.
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inhibited contractile response to sodium fluoride,
a direct G-protein activator, in rat aorta [16]. SOV,
a selective inhibitor of tyrosine phosphatase, by
maintaining phosphorylation of tyrosine residues
[25–30], may increase the activity of G-proteins
thereby favouring vasoconstriction. By contrast,
genistein and SOV had no significant effect on
MLCK [17], protein kinase-C [16, 24] and protein
kinase-A [24] activities. The inhibitory effect of genis-
tein on agonist-induced contraction is still present in
calcium-free medium [16]. Furthermore, the calcium
channel blocker verapamil has no effect on the
potentiation of agonist-induced contraction by phenyl-
arsine oxide, an inhibitor of tyrosine phosphatase [31].
This suggests that calcium released from intracellular
stores rather then calcium influx might, at least in
part, mediate the vasoconstrictor effect of tyrosine
kinase.

Acetylcholine causes vasodilatation through activa-
tion of eNOS and NO release. The present study
provides circumstantial evidence suggesting that
inhibition of eNOS through tyrosine phosphorylation
may account for the inhibitory effect of SOV on
acetylcholine-induced relaxation.

Previous reports have shown that both tyrosine-
phosphatase inhibitors, SOV and phenylarsine oxide,
caused endothelium-dependent vasodilatation in pig
coronary and in rabbit carotid arteries respectively
[4, 15]. In this study, only a moderate endothelium-
dependent vasodilatation of rat pulmonary arteries
in response to increasing concentrations of SOV was
found. Pretreatment with L-NAME, however, greatly
increased the vasodilator response to SOV, that was
fully attenuated by glibenclamide. This suggests that
NO exerts an inhibitory effect on a glibenclamide-
sensitive vasodilator that can be activated by SOV.
This vasorelaxing factor most likely derives from the
endothelium, as PA rings, without endothelium failed
to relax in response to SOV after inhibition of NO
synthesis by L-NAME. As glibenclamide only inhib-
ited the L-NAME-induced vasorelaxing response to
SOV in PA rings with endothelium, the authors
suggest that the putative endothelial-derived relaxing
factor implicated in this study is one of the EDHF(s).
To date the release of EDHF, induced by acetylcho-
line, has been seen only after inhibition of eNOS
and cyclooxygenase [3, 11]. In coronary arteries,
EDHF is likely to act through the opening of KCa

channels rather then KATP channels [11, 12]. In the
present study, the vasodilator effect of SOV, which is
seen only in the presence of L-NAME, suggests that
inhibition of NO synthesis favours the release of a
vasodilator substance sensitive to glibenclamide. This
compensatory mechanism may play an important
role in vascular disorders characterized by impairment
of NO synthesis and/or release.

In conclusion, it has been demonstrated that
inhibition of tyrosine phosphatase increases the vaso-
contractile response to phenylephrine and reduces
endothelium-dependent relaxation to acetylcholine.
Surprisingly, sodium orthovanadate also causes vaso-
dilatation, which is probably due to the release of
endothelium-derived hyperpolarizing factor, an effect

which can only be observed during inhibition of nitric
oxide synthesis.
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