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Bone marrow progenitors in inflammation and repair:

new vistas in respiratory biology and pathophysiology
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INTRODUCTION
Bone marrow-derived stem cells
Respiratory and allergic/immune diseases such as asthma,
chronic obstructive pulmonary disease (COPD), pulmonary
fibrosis, cystic fibrosis, and acute and chronic lung infections
are leading causes of morbidity and mortality in Canada as
well as globally. Inflammatory pathology is central to all of
these diseases, recently recognised to include systemic
processes involving the active recruitment and differentiation
of bone marrow-derived haemopoietic and nonhaemopoietic
‘‘progenitors’’ (termed BMSC). These cells have the potential to
differentiate into a diversity of cell types found in normal
tissue [1–4], as well as to contribute to repair and remodelling
following lung injury. Recently, it has been proposed that
circulating BMSC can ‘‘sense’’ injured tissue, and undergo
migration and recruitment to sites of tissue damage. Here they
can differentiate into inflammatory effector cells (such as
neutrophils, eosinophils, basophils, mast cells and monocytes),
or nonhaemopoietic cells that can promote structural and
functional tissue repair, revealing the plasticity of these
pluripotent cell populations [5] and their participation in
regenerative and/or inflammatory processes. Within tissues,
the fate of haemopoietic progenitors is determined by locally
elaborated growth factors that permit a process termed ‘‘in situ
haemopoiesis’’ [6–9]. This leads to the accumulation of
inflammatory effector cells, immunocompetent cells and tissue
structural cells (e.g. dendritic and endothelial cells).

Markers of BMSC
A critically important marker of haemopoietic progenitors in
the marrow, circulatory and tissue compartments [10–13] is the
CD34 antigen. This is an integral membrane differentiation
stage-specic glycoprotein that is expressed on the majority of
immature haemopoietic cells [14, 15]. It is also expressed on
tissue structural cells, including fibroblasts and vascular
endothelial cells [15, 16], functioning to regulate adhesion of
these cells to haemopoietic inductive microenvironmental
stroma and, presumably, to other elements in blood vessels
and peripheral tissues [17]. The CD34-knock out mouse
models have revealed a down-modulation of leukocyte

trafficking [18] and a reduction of numbers of myeloid
progenitor cells [19].

BMSC IN LUNG AND AIRWAYS INFLAMMATION
Mobilisation of BMSC
A brisk bone marrow response that includes the release of
immature cells has been documented during the course of a
variety of inflammatory events in the lung, such as pneumonia,
endotoxaemia, cigarette smoking, asthma and exposure to air
pollutants [20–27]. Studies in bacterial pneumonia showed
increased circulating levels of bone marrow-derived progeni-
tors of endothelial cells (AC133+ cells or endothelial progenitor
cells (EPCs)). Subjects with low EPC counts tend to have
persistent fibrotic changes in their lungs after recovery from
pneumonia [28]. This suggests that BMSC contribute to lung
repair following infection. Since emphysema is characterised
by the destruction of alveolar walls, defective repair following
injury (by cigarette smoke) has been postulated as a potential
mechanism for the development of emphysema. The very
interesting study by PALANGE et al. [29] in the current issue of
the European Respiratory Journal shows a .50% decrease in
circulating levels of haemopoietic progenitors (CD34+ cells)
and EPCs in subjects with severe COPD. The study also
demonstrates a relationship between disease severity (airways
obstruction or forced expiratory volume in one second/forced
vital capacity ratio) and circulating progenitors, suggesting
that this could imply a defective BMSC response as a critical
determinant of the pathogenesis of COPD. An alternative
interpretation of their findings is that decreased numbers of
circulating progenitors in circulation are a result of ongoing
BMSC recruitment into, and sequestration in, inflamed lung
tissue. Unfortunately, the authors do not seriously consider the
latter possibility (see below), leaning almost exclusively
towards a postulate of decreased bone marrow production
and/or release of stem cells in COPD.

Circulating levels of pro-inflammatory and haemopoietic
growth factors, e.g. interleukin (IL)-6, IL-8 and granulocyte
colony-stimulating factor (GC-SF), are elevated during acute
community-acquired pneumonia [30]. Several of these inflam-
matory mediators, generated locally and translocated systemi-
cally during acute and chronic airways inflammation,
constitute critical mediators (granulocyte-macrophage colony-
stimulating factor, GC-SF, macrophage colony-stimulating
factor, IL-5 to IL-8, IL-12 and macrophage inflammatory
protein-1a) in the release, trafficking and differentiation of
BMSC [31–38] (fig. 1).
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Homing of BMSC to the lung and airways
Mesenchymal stem cells express a unique set of chemokine
receptors that are thought to be involved in the homing of
these cells to tissues [39]. Mediators such as plasma stromal-
derived factor (SDF)-1a have been shown to promote homing
of stem cells to the marrow [3]. SDF-1a, vascular endothelial
growth factor (VEGF)-A and fibroblast growth factor-2 are
elevated following myocardial injury and postulated to
promote homing of EPCs into damaged myocardium [40]. In
an animal model, lung injury induced by irradiation, combined
with elastase digestion, increased the homing of these BMSCs
into the lung [41]. This suggests that local production of
homing factors in the lung promotes recruitment of BMSC into
damaged lung tissues, and that BMSC contribute to modula-
tion of airway inflammatory responses. PALANGE et al. [29] note
that neither hepatocyte growth factor nor VEGF, crucial for
recruitment and effective epithelial and endothelial repair in
the lung [42], were decreased in their COPD group, suggesting
effective homing and recruitment of BMSC into lung tissues.
Differences in BMSC dynamics among various airways
conditions such as pneumonia [28], interstitial lung disease
[41, 43], and COPD may be due to differences in the nature and
severity of the inflammatory/injurious stimulus.

BMSC IN ALLERGIC DISEASE
BMSC in the maintenance of allergic airways inflammation
Accumulation of eosinophils and basophils in tissues is
characteristic of allergic inflammation in rhinitis, nasal poly-
posis and asthma. These airway tissue inflammatory events are
coincident with relevant changes and fluctuations of circulat-
ing and marrow populations of eosinophil-basophil (Eo/B)
progenitors [44–49], including upregulation of IL-5Ra and
CCR3 (eotaxin receptor) and CXCR4 (SDF-1 receptor, on bone
marrow as well as airways tissue CD34+ cells) [11, 50–53]. The
latter axis plays a critical role in adult haemopoietic stem cell

homing, as it does during embryogenesis [54]. The functional
consequence of increased levels of progenitors in numerous
compartments highlights the multiple levels at which BMSC
can respond to allergic stimuli. The results are consistent with
the hypothesis that eosinophils and basophils accumulate at
sites of allergic reactions, at least in part, by recruitment of
progenitors from circulation and bone marrow, under the
influence of tissue-elaborated haemopoietic cytokines and
chemokines.

Relevant to these considerations, and critical to the interpret-
ation of the findings of PALANGE et al. [29], there is document-
ation of consistent and dramatic decreases in circulating Eo/B
colony-forming units (CFUs) in subjects with allergic airway
(rhinitis and asthma) symptoms during the peak of seasonal
aero-allergen (i.e. continual, daily) exposure [55–57], with
numbers rising again post-seasonally. This has led to the
hypothesis of a high-turnover state of these progenitors, with
increased trafficking to tissues and their differentiation in situ.
Further support of this concept comes from observations in a
model of controlled withdrawal of inhaled corticosteroids to
provoke a mild asthma exacerbation. Circulating Eo/B CFU
rise and are then restored to baseline or lower with reinstitu-
tion of disease-controlling inhaled therapy, suggesting that
progenitor fluctuations contribute to tissue inflammation,
and are responsive to tissue signals as well as to topical
corticosteroid therapy [57–59]. This view is strengthened
by the following findings. 1) CD34-immunopositive/IL-5
receptor-a mRNA+ cells are detectable in lung biopsies from
atopic asthmatics [51]. 2) An ex vivo allergen challenge of nasal
explant tissue from allergic rhinitis demonstrates IL-5-driven
eosinophil differentiation [60]. 3) In mouse models of allergen-
induced airway eosinophilia, increased numbers of IL-5-
responsive Eo/B-CFU can be grown from lung-extracted
progenitors following allergen challenge compared with saline
challenge [13]. Additionally, bone marrow progenitors are
upregulated in the airway after allergen inhalation [61, 62], a
process which is dependent on IL-5 and eotaxin [63–66].

BMSC in the development of allergy and asthma
There is now a burgeoning body of evidence showing that
activation of selective haemopoietic processes is not only
associated with the onset and maintenance of allergic
inflammation in atopic adults, but also with the development
of the allergic disease in infants. Functional and phenotypical
progenitor alterations relevant to Eo/B lineage commitment
have been observed in neonates at risk for atopy and asthma
[67, 68]. This area promises to be of great interest in under-
standing the role and fate of the very abundant CD34+ BMSC
populations present in cord blood at birth.

BMSC IN LUNG REPAIR
KRAUSE et al. [4] have shown that injected BMSC can be
detected in recipient lung tissue as fibroblast-type cells or
bronchial epithelial cells and type I & II pneumocytes [69, 70].
Several studies have shown that BMSC can differentiate into
lung cells in mice [4, 70–73] as bronchial epithelial cells [4],
type I alveolar epithelial cells [70] and type II alveolar
epithelial cells [4, 71]. In human studies after haemopoietic
stem cell transplantation, ‘‘chimerism’’ of epithelial and
endothelial cells has been reported in recipients [74, 75].
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FIGURE 1. Schematic diagram to show lung inflammation induced by stimuli,

which generates mediators that stimulate the bone marrow to produce and release

haematopoietic and mesenchymal stem cells (SC). The bone marrow-derived SCs

are involved in the regulation of the inflammatory response. SDF: stromal-derived

factor; VEGF: vascular endothelial growth factor; FGF: fibroblast growth factor;

HGP: hepatocyte growth factor; IL: interleukin; GM-CSF: granulocyte-macrophage

colony-stimulating factor; MC-SF: macrophage-colony-stimulating factor.

BONE MARROW PROGENITORS IN INFLAMMATION J.A. DENBURG AND S.F. VAN EEDEN

442 VOLUME 27 NUMBER 3 EUROPEAN RESPIRATORY JOURNAL



Traditionally, type II alveolar epithelial cells have been
believed to be progenitor cells of type I cells [76, 77], but
recently ABE et al. [78] showed that type I alveolar epithelial
cells could be derived from circulating stem cells. WANG et al.
[79] recently demonstrated that genetically corrected bone
marrow-derived mesenchymal cells from cystic fibrosis
patients differentiate into airway epithelial cells, suggesting
this as a potential therapy for these patients. The epithelium
itself contains cells with properties of progenitor cells [76, 80–
83] and, like BMSC, these cells may reside in niches. Key
unanswered questions regarding the regeneration of lung
epithelial cells include the following. 1) What progenitor cells
initiate airway and alveolar epithelial repair? 2) What markers
identify these cells? 3) What is the relative contribution of
resident epithelial progenitors versus BMSC, e.g. does the
relative contribution vary with the nature of the injury and/or
the presence of underlying disease?

BMSC-BASED THERAPEUTICS
BMSC constitute a double-edged sword. Potentially, they
could promote lung and airways inflammation and tissue
damage by providing pro-inflammatory effector cells such as
eosinophils or neutrophils. Alternatively, there is mounting
evidence that BMSC may be useful, if not as true stem cells
then at least as vehicles for emerging cell and gene therapies,
especially in the field of tissue engineering. BMSC with
mesenchymal stem cell characteristics are capable of differ-
entiating along multiple lineages in vitro and in vivo and have
significant expansion capability [1–4, 69–71, 84–87].

Promising studies have shown that these cells from the bone
marrow can repair damaged muscle cells [85, 86], revascularise
ischemic myocardium [86], differentiate into micro- and
macroglia in the brain [87], and replace liver cells [71] and
lung cells [4, 69, 70]. Regulating and promoting this process
offers a novel cell-based therapeutic option for regeneration
and repair of lung tissues.
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