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Recommendations on the use of exercise

testing in clinical practice
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ABSTRACT: Evidence-based recommendations on the clinical use of cardiopulmonary exercise

testing (CPET) in lung and heart disease are presented, with reference to the assessment of

exercise intolerance, prognostic assessment and the evaluation of therapeutic interventions (e.g.

drugs, supplemental oxygen, exercise training). A commonly used grading system for

recommendations in evidence-based guidelines was applied, with the grade of

recommendation ranging from A, the highest, to D, the lowest.

For symptom-limited incremental exercise, CPET indices, such as peak O2 uptake (V9O2), V9O2

at lactate threshold, the slope of the ventilation–CO2 output relationship and the presence of

arterial O2 desaturation, have all been shown to have power in prognostic evaluation. In addition,

for assessment of interventions, the tolerable duration of symptom-limited high-intensity

constant-load exercise often provides greater sensitivity to discriminate change than the classical

incremental test. Field-testing paradigms (e.g. timed and shuttle walking tests) also prove

valuable.

In turn, these considerations allow the resolution of practical questions that often confront the

clinician, such as: 1) ‘‘When should an evaluation of exercise intolerance be sought?’’; 2) ‘‘Which

particular form of test should be asked for?’’; and 3) ‘‘What cluster of variables should be selected

when evaluating prognosis for a particular disease or the effect of a particular intervention?’’

KEYWORDS: Cardiopulmonary exercise testing, evaluation of interventions, exercise testing,

prognosis, walking tests

T
he purpose of this document is to present
recommendations on the clinical use of
exercise testing in patients with cardiopul-

monary disease, with particular emphasis on the
evidence base for the functional evaluation, prog-
nosis and assessment of interventions. While the
scope of the document is broad, consideration will
focus only on those indices that have demonstrable
predictive power. Supplemental references will
therefore be included, where appropriate.

Exercise intolerance can be defined as an inability
to complete a required physical task successfully.
In one sense, therefore, everyone who exercises
has, at some level(s), ‘‘exercise intolerance’’.
From a clinical perspective, the issue is whether
a patient demonstrates intolerance to a task that
normal subjects would find tolerable. However,
exercise intolerance (often considered in terms of

peak oxygen uptake (V9O2,peak)) in pulmonary
and cardiac disease patients cannot be confi-
dently predicted from physiological variables,

determined at rest, such as forced expiratory

volume in one second (FEV1), pulmonary diffus-

ing capacity for carbon monoxide (DL,CO), ejec-

tion fraction (EF) or body mass index (BMI). It is

necessary, therefore, to actually assess an indivi-

dual’s exercise intolerance and, where possible,

establish its cause(s). This task-specificity

imposes technical challenges: the requirement to

be able to impose particular work-rate protocols

in an accurate and reproducible fashion largely

confines assessment to ergometric devices, such

as cycle ergometers and treadmills. While these

represent a less-than-ideal approximation to the

realities of daily exercise, they provide a pre-

cise and controlled focus for assessing the
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appropriateness of the interaction among the contributing
physiological support systems.

Cardiopulmonary exercise testing (CPET) should be consid-
ered the gold standard for evaluating the causes of exercise
intolerance in patients with pulmonary and cardiac disease,
and is based on the principle that system failure typically
occurs while the system (e.g. muscle–energetic, cardiovascular
or pulmonary) is under stress. CPET comprises the imposition
of symptom-limited incremental exercise, commonly in com-
bination with comprehensive breath-by-breath monitoring of
cardiopulmonary variables (e.g. V9O2, pulmonary CO2 output
(V9CO2), minute ventilation (V9E), cardiac frequency (fC)),
perceptual responses (e.g. dyspnoea, leg discomfort) and, as
needed, measurements such as exercise-related arterial oxygen
desaturation, dynamic hyperinflation and limb-muscle
strength. Thus, the support systems are ‘‘forced’’, normally
over their tolerable range, in a controlled way that allows key
system responses to be expressed relative to an appropriate
frame of reference (e.g. V9E being expressed relative to V9CO2)
and indices of aerobic function (e.g. lactate threshold (hL),
V9O2,peak) to be discriminated confidently. Previous European
Respiratory Society and American Thoracic Society (ATS)/
American College of Chest Physicians statements have
provided useful recommendations on the standardisation of
CPET in clinical practice [1–3].

While a wide variety of tests is available, each being more or
less suitable as a stressor of a particular component of a
patient’s pathophysiology, the appropriateness of the inte-
grated physiological-system response is best studied (certainly,
for initial exercise evaluation) by means of a symptom-limited
incremental test. This is typically established by means of a
progressive increase in work-rate by a small fixed increment at
a fixed frequency (e.g. each minute or less), in a ‘‘staircase’’
fashion, or when work-rate is increased incrementally under
computer control as a smooth continuous ramp both with
cycle-ergometry [1, 3–5] and, more recently, for the treadmill
[6]. However, high-intensity constant-load tests are also
becoming widely used as, in many instances, they provide a
sensitive discrimination of improved function consequent to
an intervention.

System function can be well described through a range of
appropriately selected responses to incremental and/or high-
intensity constant-load exercise. These may represent values of
variables at certain reference points within the tolerable range
of the test or response profiles over selected regions of interest.
Assessing the normality, or otherwise, of such system
responses requires the investigator to select, and display
appropriately, the cluster of response variables that are best
reflective of the behaviour of the particular system(s).
Discrimination of the magnitude and/or pattern of deviation
from the normal response of the age-, sex- and activity-
matched ‘‘standard’’ subject can then be attempted, and the
magnitude or pattern of abnormality matched with that
characteristic of the specific physiological system(s) that is/
are dysfunctional. In some instances, appropriate normal
values may not be readily available. In others, values may be
modality-dependent (e.g. greater muscle mass involved in
treadmill exercise results in a slightly higher V9O2,peak).

However, although there is widespread clinical use of CPET, it
is not considered to provide a substantial improvement in
primary diagnostic power (i.e. with respect to the basic
category of abnormality) over more classical clinical tools such
as spirometry and electro- and echo-cardiography. What CPET
can do, however, is provide considerable ‘‘fine tuning’’ of these
considerations, by: 1) revealing specific abnormalities that
occur only when support systems are stressed by physical
activity (e.g. dynamic hyperinflation in chronic obstructive
pulmonary disease (COPD) or increased ventilatory response
in chronic heart failure (CHF)); and 2) providing a functional
frame of reference for assessing the efficacy of interventions
targeted to ameliorate such abnormalities (e.g. bronchodilators
for dynamic hyperinflation or vasodilators for heart failure).

With the more recent recognition that improved functional
status following an intervention such as exercise training in
patients with chronic lung disease does not always manifest
itself in appreciable increases in classical performance indices
such as V9O2,peak, the scope of CPET has been expanded to
include laboratory-based high-intensity constant-load exercise
paradigms performed to the limit of tolerance (tlim), which can
provide a more sensitive frame of reference especially in the
context of prognosis and intervention. Field-testing paradigms,
such as timed and shuttle walking tests, are also becoming
popular, often supported by measurements of variables such
as arterial oxygen saturation (Sp,O2, used here in preference to
the more conventional abbreviation Sa,O2, to reflect the fact that
during exercise it is most commonly measured noninvasively
using pulse oximetry), fC and exertional symptoms. What is
perhaps not so widely recognised is that such tests can be
viewed constructively in the context of the ‘‘power–duration
relationship’’ for constant-load symptom-limited exercise.
Finally, the use of CPET is becoming more widespread both
prognostically and for the evaluation of interventions such as
oxygen supplementation, exercise-based rehabilitation and
drug therapies.

This document is therefore intended to provide the answers to
three fundamental questions often faced by clinicians: 1)
‘‘When should an evaluation of exercise intolerance be
sought?’’; 2) ‘‘Which particular form of test should be asked
for?’’; and 3) ‘‘What cluster of variables should be selected
when evaluating prognosis for a particular disease or the effect
of a particular intervention?’’. This is accomplished through
critical evaluation of CPET outcomes in the context of
diagnosis, prognosis and pertinent interventions, with the
underlying physiological principles being presented in sup-
plementary material online.

UTILITY OF CPET IN DIAGNOSIS AND FUNCTIONAL
EVALUATION
What additional diagnostic and/or prognostic information can
be expected to arise from CPET in a particular patient? CPET
can: provide an objective measure of exercise capacity; identify
the mechanisms limiting exercise tolerance; establish indices of
the patient’s prognosis; and monitor disease progression and/
or the response to interventions. What CPET cannot uniquely
do is affect diagnosis, except in very specific conditions, such
as exercise-induced bronchoconstriction and arterial oxygen
desaturation. In most instances, the patient to be studied will
have already presented with a primary diagnosis. However,
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where CPET can be valuable is in differential diagnosis; for
instance, profiles of judiciously selected cardiopulmonary and
gas-exchange response can distinguish between pulmonary
and cardiac limitations to exercise. The interpretative power of
CPET can be strengthened by incorporating additional
measurements. In a patient with a primary diagnosis of
COPD, for example, these typically include habitual physical
activity levels, body mass and composition, muscle strength,
exercise-related arterial desaturation, dynamic hyperinflation
and exacerbation of symptoms. Importantly, CPET should be
viewed as a key adjunct to a previous comprehensive medical
evaluation comprising a medical history and examination and,
depending on what is suspected, other complementary tests
and measurements (e.g. haematocrit, biochemistry, resting
electrocardiogram, chest radiography, arterial blood-gas analy-
sis, resting pulmonary function testing). The nature and extent of
the medical evaluation prior to exercise testing should be focused
on narrowing the range of suspected diseases.

Exercise intolerance
Measurement of V9O2,peak (see section 1.1 and fig. 1, both in
supplementary material) is highly reproducible in healthy
asymptomatic subjects who are well motivated during the
exercise test. This has also been shown to be the case in
situations where exercise is symptom-limited [7–10], which is
important in contexts such as disability benefits claims or
exercise prescription when a patient complains of breath-
lessness or exercise intolerance. In certain diseases, such as
COPD and CHF, where it is preferable that the index of
exercise intolerance relates more closely to activities of daily
living, walking tests such as the 6-min walking test (6-MWT) [11,
12] are commonly used. As is the case for CPET, reproducibility
requires that standardised procedures are adopted.

Causes of exercise intolerance
The causes of exercise intolerance can broadly be classed as
‘‘central’’ (‘‘Could, but won’t’’) and ‘‘peripheral’’ (‘‘Would, but
can’t’’). The classical criterion for defining exercise intolerance
and classifying degrees of impairment is V9O2,peak standar-
dised by body mass [13]. As factors such as habitual physical
activity, age, sex and height influence V9O2,peak (see supple-
mentary material, 1.1) and distance walked on the 6-MWT (6-
MWD) [14–16], it is recommended that the normalcy (or
otherwise) of exercise capacity be judged relative to reference
values for matched healthy populations, taking into account
not only body mass but, in certain conditions, also fat-free
mass (see supplementary material, 1.1). Values .1.96 times the
SD should be considered abnormal with a confidence of
95%.Values ,40% predicted indicate severe impairment [17].

CPET in the identification of the causes of exercise intolerance
There are several CPET response patterns that are not disease-
specific but nonetheless point to particular sites of system
dysfunction, thereby narrowing the differential diagnosis (c.f.
fig. 2 in supplementary material). The absence of these
response patterns can be taken as evidence against a significant
involvement of these systems in exercise limitation. Although
the exact mechanisms of exercise limitation in individuals
without known disease are difficult to establish, ventilatory
limitation is usually unlikely as there is still a signifi-
cant breathing reserve at peak exercise (see supplementary

material, 1.6) [17]. Furthermore, a decreased arterial carbon
dioxide tension (Pa,CO2) at end-exercise implies respiratory
compensation for metabolic acidosis (see supplementary
material, 1.3 and 1.5) as, despite some widening of the
alveolar–arterial oxygen difference (PA-a,O2), arterial oxygen
tension (Pa,O2) and Sp,O2 are not appreciably different from
resting values [18]. With good subject effort, if V9O2,peak is
above the lower limit of the 95% confidence interval (i.e.
‘‘normal’’ V9O2,peak) and the subject indicates that either
dyspnoea or leg fatigue was the reason for stopping exercise,
then the subject is frequently deemed to have a normal exercise
tolerance. This scenario would effectively exclude significant
COPD or interstitial lung disease (ILD) [19, 20], CHF [21] and
pulmonary vascular disorders (PVD) [22] as causes of the
exercise intolerance. However, while the finding of a normal
V9O2,peak may be helpful in providing reassurance to the
patient and in limiting subsequent testing, it is important to
recognise that normal in this context actually means ‘‘what is
to be expected for relatively sedentary subjects’’ (i.e. character-
istic of the group from which the normal value derives). So a
normal V9O2,peak in a subject with a high activity level, or one
who has previously been highly fit, should not necessarily be
viewed as reflecting the absence of an abnormality.

For patients with unexplained exercise intolerance for whom
initial test results (e.g. spirometry and echocardiography) are
non-diagnostic, CPET may represent a useful tool in identify-
ing whether the exercise intolerance is due to abnormalities in
the oxygen transport pathway (extending from atmospheric air
to the mitochondria in muscle), deconditioning or psychologi-
cal factors (hyperventilation, panic, anxiety syndromes, etc.).
Response patterns may not be diagnostic of specific aetiology
but, together with previous medical evaluation, they can help
to direct further diagnostic testing [4, 23–26].

Abnormal oxygen delivery

This term encompasses several heterogeneous conditions that
have in common a reduced systemic oxygen delivery (i.e. the
product of cardiac output and arterial oxygen content) during
exercise, relative to metabolic demands. These are charac-
terised by a low V9O2,peak and low hL (see supplementary
material, 1.1 and 1.3). fC reserve is also frequently low,
although if symptoms force the patient to quit early, fC reserve
will be high (see supplementary material, 1.4). In most cases,
peak O2 pulse is low and the fC–V9O2 slope is steep [27–29] and,
with significant systolic or diastolic heart failure, the O2 pulse
plateaus early in the test (see supplementary material, fig. 4)
[30]. The finding of O2 pulse increasing normally until a point
and then decreasing, with a corresponding increase in the fC–
V9O2 slope, is relatively specific to coronary artery disease [31].

Ventilatory limitation to exercise

Ventilatory limitation at peak exercise, which is usually
observed in obstructive lung diseases (see fig. 6 in supple-
mentary material) and may also be seen in restrictive lung
diseases, is judged to occur when V9E/maximum voluntary
ventilation (MVV) exceeds 85% [17], particularly if respiratory
compensation for metabolic acidosis is not evident, i.e. Pa,CO2

being increased [32] or normal with a high dead space fraction
of the breath (dead volume/tidal volume; VD/VT). A low
breathing reserve may also be seen in endurance ahletes and fit
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elderly people, for whom V9O2,peak is above the normal age-
matched range (see supplementary material, 1.6).

Abnormal ventilatory control

It is important to emphasise that the profile of ventilatory
response to exercise cannot be predicted from resting lung
function; it must be measured. The appropriate frame of
reference for V9E is V9CO2 (see supplementary material, 1.5),
and it will emerge that the V9E–V9CO2 slope and the ventilatory
equivalent for CO2 (V9E/V9CO2) at hL are important in
diagnosis, prognosis and evaluation of interventions.
Abnormal ventilatory control during exercise is defined as an
inappropriately high (hyperventilation, i.e. low carbon dioxide
tension (PCO2) set-point) or low (hypoventilation, i.e. high PCO2

set-point) V9E–V9CO2 slope. The defect may be primary (i.e. not
attributable to any specific disease or known mechanism) or
secondary (i.e. secondary to hypoxia, or other influences in
respiratory or cardiac diseases that can stimulate V9E).

In primary hyperventilation, there is a marked hyperventila-
tion at rest with metabolic compensation being more or less
complete. The hyperventilation is maintained during exercise,
i.e. with abnormally large increases in V9E and an elevated V9E–
V9CO2 slope [33–35]. However, as an increased V9E–V9CO2 slope
can reflect an increased VD/VT as well as a reduced PCO2 set-
point, simultaneous Pa,CO2 monitoring is needed to rule out the
former. Pa,CO2 typically remains depressed during exercise
[35], although there have been reports that Pa,CO2 may increase
towards normal levels when exercise is intense enough for
automatic mechanisms of control to override the presumed
corticogenic drive [4]. In some patients, exercise-induced
bronchoconstriction (EIB) may be the cause of exercise
hyperventilation [36]. In addition, in subjects with normal
coronary arteries, hyperventilation during exercise has been
associated with ECG changes resembling ischaemia [37].

Secondary hyperventilation during exercise (with a reduced
Pa,CO2) is proposed to result from hypoxaemia-induced
stimulation of peripheral (carotid) chemoreceptors, cardiopul-
monary mechanoreceptor activity (ILD, PVD) and/or muscle
mechano- or chemoreceptor activation (e.g. CHF) [20, 22, 38–43].

Primary hypoventilation is defined as an abnormally low
increase in V9E relative to V9CO2 (i.e. reduced V9E–V9CO2 slope)
with CO2 retention in the absence of a recognisable pulmonary
disease [44–46]. Secondary hypoventilation is frequently
observed in COPD [19, 32], and may also be seen in advanced
ILD [20] and neuromuscular diseases [47]. It is important to
point out that when exercise hypoventilation occurs in COPD
and ILD, V9E may, seemingly paradoxically, be higher than
normal at a given V9CO2 despite CO2 retention; this reflects the
influence of an elevated VD/VT.

Pulmonary gas exchange abnormalities

The efficiency of pulmonary gas exchange is conventionally
judged by the magnitude of PA-a,O2, and knowledge of how
this changes during exercise can be useful in evaluating the
severity of many lung and heart diseases. The behaviour of PA-

a,O2 during exercise cannot be predicted from resting lung
function; it has to be measured. Normally Pa,O2 does not
decrease during exercise and PA-a,O2 at peak exercise remains
below 2.66–3.99 kPa (20–30 mmHg) [48, 49]. A PA-a,O2

.3.99 kPa (30 mmHg) at peak exercise is defined as abnormal
and is commonly accompanied by arterial desaturation (i.e.
Sp,O2 ,88%). Pa,O2 f7.32 kPa (55 mmHg) is usually consid-
ered clinically significant, and may limit exercise tolerance
with the potential to endanger the subject. This is seen in most
patients with ILD and PVD, in many patients with moderate
and severe COPD [50–54], and less frequently in patients with
intracardiac left-to-right shunting or chronic heart failure [4].
Interestingly, it can also be seen in elite endurance athletes (see
supplementary material, 1.8).

Muscle metabolic dysfunction

There are many sites within skeletal muscle metabolic path-
ways whose dysfunction can result in exercise intolerance
(reduced V9O2,peak and hL), ranging from routes of substrate
delivery and utilisation to energy transformations themselves.
The detection of such impairments is beyond the scope of
conventional CPET and relies on interventions such as muscle
biopsy and noninvasive muscle nuclear magnetic resonance
spectroscopy and imaging (the interested reader is referred to
[55–58] for further discussion).

As one of the more commonly affected processes is mitochon-
drial oxygen consumption, in general terms, the exercise
response pattern is similar to that for conditions grouped
under the heading of abnormal oxygen transport. In the
absence of evident cardiopathy, anaemia or carboxyhaemoglo-
binaemia, muscle myopathic disease is suggested. However,
milder forms of myopathy as well as significant muscle
deconditioning (see later) may be difficult to differentiate from
mild cardiovascular disease. Patients with metabolic myopa-
thies may also present with muscle pain during or after
exhausting exercise [41, 43, 59] or with cramps during exercise
(myoadenylate deaminase deficiency) [60].

Deconditioning

Patients with a sedentary lifestyle may complain of exercise
intolerance. Unless the sedentarity is marked, V9O2,peak may be
normal or only mildly decreased. A cardinal sign of decondi-
tioning is a leftward shift and steepening of the fC–V9O2

relationship and a shallower O2 pulse profile (see supplemen-
tary material, 1.4), although peak fC can be normal (if care is
taken to motivate the subject during the test) with conse-
quently little or no fC reserve. Because of the low V9O2,peak,
there is usually significant breathing reserve. Pa,O2 and VD/VT

responses are normal. Deconditioning is often difficult to
distinguish from mild heart disease, but if the medical history
shows no evidence of disease, it is reasonable attribute the
exercise intolerance solely to deconditioning.

Excessive perception of symptoms

In some individuals with exercise intolerance, the only finding
is a disproportionate or exaggerated perception of symptoms
(e.g. dyspnoea, leg effort) with no evident physiological
abnormality [61]. This condition constitutes a problem in
clinical practice often requiring further explanation. CPET is a
valuable tool in this regard, providing the clinician with
evidence that the patient-perceived symptoms are not due to
significant cardiovascular or respiratory disease. It is rare that
either healthy subjects or patients with chronic disease score
their symptoms (i.e. dyspnoea, leg fatigue) higher than 7 on the
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Borg 10-point scale, especially at peak exercise [62], although in
patients with chronic disease the ratios of symptom score/V9O2

and symptom score/V9E may be increased [23, 63].

Poor effort
The assumption underlying CPET is that test termination
signifies the expression of physiological system limitation. In
rare cases, however, the end-point may be reflective of poor
effort (‘‘Could, but won’t’’), as, for instance, with malingering
[4]. Thus, poor effort is evident in a low V9O2,peak with a high fC
reserve and breathing reserve. The lactate threshold may not
be reached, or may be normal rather than low. Breathing
pattern is likely to be atypically irregular (see supplementary
material, fig. 2, panel 7), leading to erratic fluctuations in end-
tidal and arterial PCO2 (see supplementary material, fig. 2,
panel 6).

Differential diagnosis
Exercise testing has been proven to be useful for: distinguish-
ing between normal and abnormal responses to exercise;
differentiating between cardiovascular and pulmonary causes
of exercise intolerance [1, 64–68]; and identifying disorders of
pulmonary gas exchange, certain muscle diseases and psycho-
logical disorders [4, 23–25].

Algorithms based on key measurements can be helpful in the
identification of the causes that limit exercise tolerance.
However, they may fail in the evaluation of early or mild
disease as well as combined disease (i.e. cardiac–pulmonary).
Furthermore, although several differing interpretative algo-
rithms have been developed, none have been clinically
validated. Notably, in one study of 130 consecutive, clinically
indicated cardiopulmonary exercise tests that were performed
with radial and pulmonary artery catheters in place [69], a
widely used, noninvasive cardiopulmonary exercise test
diagnostic algorithm [4], unmodified, showed a sensitivity
for pulmonary vascular limitation (defined as pulmonary
vascular resistance at maximum exercise .120 dynes?sec?cm-5)
of 79%, a specificity of 75% and an accuracy of 76%. With some
adjustments of branch-point threshold values, specificity and
accuracy improved to 88% and 85%, respectively.

CPET RESPONSE PROFILE IN SPECIFIC DISEASES
This section considers whether specific patterns of response
abnormality have diagnostic power for particular pulmonary
(COPD, ILD, primary pulmonary hypertension (PPH), cystic
fibrosis (CF)) and cardiac (CHF) diseases.

Chronic obstructive pulmonary disease
While the response to incremental exercise may have certain
characteristic features, the diagnosis of COPD patients, except
in rare exceptions, requires no more than clinical history and
spirometry. Exercise testing in such patients, however, is
increasingly used for the objective measurement of exercise
capacity and for the identification of the causes limiting
exercise tolerance that can be eventually be ameliorated or
even corrected by specific interventions (e.g. bronchodilators,
supplemental oxygen, rehabilitation). In COPD patients,
exercise intolerance is multifactorial in origin. Recognised
contributory factors include, alone or in combination, exer-
tional symptoms (e.g. dyspnoea, leg fatigue), reduced ventila-
tory capacity, development of dynamic hyperinflation,

peripheral muscle dysfunction and O2 transport abnormalities.
These factors are highly interdependent and occur in variable
combinations that differ from patient to patient. Importantly,
exercise intolerance cannot be predicted in the individual
patient from indices of pulmonary and cardiac function at rest
[70–73]. V9O2,peak obtained with CPET is the best available
index of aerobic capacity in COPD, provided that the subject
has attained his or her limits (see supplementary material, 1.1),
and its measurement is also reasonably reproducible in COPD
[74–76].

Ventilatory limitation, ventilatory requirement and dynamic
hyperinflation
In the vast majority of COPD patients, CPET reveals that
exercise tolerance is largely limited by the combination of a
reduced ventilatory capacity and an increased ventilatory
requirement, which exacerbates dyspnoeic sensation. In addi-
tion, a heightened perception of leg effort may be a limiting
factor in a substantial number of patients, particularly during
cycle-ergometer exercise [63, 77]. Importantly, the develop-
ment of dynamic hyperinflation has been recognised as an
important limiting factor responsible for the development of
intolerable dyspnoea during exercise (fig. 1; see supplementary
material, 1.7) [78]. The increased ventilatory demand in flow-
limited patients during exercise gives rise to air trapping and
dynamic hyperinflation [32]. The extent of dynamic hyperin-
flation depends on the degree of expiratory flow limitation, the
shape of the maximal expiratory flow–volume loop, the
prevailing V9E, the breathing pattern at that level of V9E, and
the degree of resting lung hyperinflation. The decrease in
inspiratory capacity (IC) often occurs in association with an
increased Pa,CO2 [32, 79] or a reduced VT [80], which strongly
suggests that respiratory mechanics are reaching their func-
tional limit. However, the extent of the reduction in IC with
exercise in COPD is variable. In a population of 105 patients
with moderate-to-severe COPD, IC at end-exercise was
reduced by 20% of its already-reduced resting value [81], as
exemplified in figure 1. In another smaller group of 27 severe
COPD patients, a similar reduction was found at the end of
high-intensity exercise [80]. Similar changes have also been
reported in severe COPD [82].

Other ventilatory abnormalities frequently observed in COPD
during exercise are a high V9E for a given V9CO2, due to the
variable contribution of an increased VD/VT and a reduced
PCO2 set-point because of arterial hypoxaemia and premature
metabolic acidosis.

Arterial oxygen desaturation during exercise
The detection of O2 desaturation is an important indication for
CEPT in COPD patients since neither the occurrence nor the
severity of desaturation during exercise can be predicted
readily from resting pulmonary function [73, 83]. Only in cases
when high DL,CO is accompanied by a high resting Sp,O2 (i.e.
o95% at sea level) does DL,CO have an elevated negative
predictive value [84], but in a large retrospective study, overall
sensitivity and specificity, determined by receiver operating
curve analysis, were both 75% with a cut-off point of 62% pred
for DL,CO [85].

Arterial desaturation during exercise is a common feature of
advanced COPD [53, 54]. While desaturation may occur with
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any type of intense leg exercise, walking either on a treadmill
or freely along the ground elicits more hypoxaemia than cycle-
ergometry [54, 86–88]. Any of the standardised walk tests is
suitable for diagnosing desaturation [11].

Exercise-induced bronchoconstriction
EIB, defined as a fall in post-exercise FEV1, should be
suspected in any patient who presents with wheezing, cough,
chest tightness or dyspnoea during or shortly after exercise. In
adults, a challenge test is indicated: in making a diagnosis of
EIB in asthmatic patients with a history of breathlessness
during or after exertion, particularly in those complaining of
symptoms after exercise in spite of presumably adequate
treatment; and to determine the effectiveness and optimal
dosing of medications prescribed to prevent EIB [83, 89, 90].

Comparisons of exercise challenges for EIB with histamine and
methacholine challenges in asthmatic patients show that
exercise challenges are consistently less sensitive but more
specific than chemical challenges in detecting EIB [91–97].
Many asthmatics (,30%) with mild bronchial hyperrespon-
siveness to chemical stimuli have negative responses to
exercise challenges, but there are individuals who have
positive responses to exercise challenges and negative
responses to histamine or methacholine challenges [98].
Taken together, this information suggests that a positive
exercise challenge outcome is relatively specific in identifying
clinical asthma, but is somewhat insensitive to the presence of
clinically relevant mild bronchial hyperresponsiveness. In this
regard, the sensitivity–specificity profile of exercise challenge
response resembles that of a histamine or methacholine
provocative concentration causing a 20% fall in FEV1 of 1 or
2 mg?mL-1 [99].

For practical reasons, running on a treadmill is usually
preferred for the detection of EIB in children. This enables
the use of the muscles most often used in play and other
common physical activities, whereas cycling may lead to
muscular fatigue at a lower absolute work rate. It has been
shown in children that running provokes EIB more easily than

cycling, and free running more than running on a treadmill in
a laboratory [100]. Running for 6–8 min provokes a greater
decrease in post-exercise FEV1 than running for shorter or
longer periods, recognising that running on a motor-driven
treadmill is particularly useful and easy to standardise [101].

EIB is thought to be caused by increased heat and/or water
loss due to increased ventilation during exercise [102, 103].
Standardisation of these factors is thus important in exercise
challenge testing. It is recommended that exercise testing for
EIB be performed at room temperature (20–22uC), with a
relative humidity of ,40%. When exercise testing is used to
monitor EIB with repeated measurements, these environmen-
tal factors should be kept constant.

Choice of work-rate is essential to the outcome of EIB testing
[104, 105]. Furthermore, the widespread use of inhaled steroids
in the treatment of asthma reduces the response to exercise
[106, 107]. In order to obtain the highest possible sensitivity
level, the work-rate should be kept high. The 1999 ATS
guidelines recommend that the work-rate should be 80–90% of
the calculated maximum [90], and even higher levels, up to
95% of calculated maximum, may be advantageous [105].

In addition to diagnosing EIB, the reduction in FEV1 after
standardised exercise may be considered as a measure of
nonspecific bronchial hyperresponsiveness [108] and used to
evaluate the severity of asthma, as well as the effects of therapy
[107]. When an extra stimulus is added to the exercise test, by
combining running on a treadmill with the inhalation of dry
cold air at -20uC, the sensitivity of the test is markedly
increased while simultaneously maintaining a high degree of
specificity [109].

For other measures of indirect bronchial responsiveness, the
sensitivity of exercise testing for EIB is rather low [110],
especially in children treated with inhaled steroids [107]. This
is understandable, as one of the main goals for treating asthma
in childhood is the mastering of EIB. In children not treated
with inhaled steroids, the sensitivity of the test is higher and
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FIGURE 1. Changes in operating lung volumes are shown as ventilation increases with exercise in a) age-matched healthy subjects and b) chronic obstructive

pulmonary disease (COPD) patients. End-expiratory lung volume (EELV) increases above the relaxation volume of the respiratory system (Rrs) in COPD, as reflected by a

decrease in inspiratory capacity (IC), while EELV in health either remains unchanged or decreases. TLC: total lung capacity; RV: residual volume; IRV: inspiratory reserve

volume; EILV: end-inspiratory lung volume; VT: tidal volume. Reproduced from [78] with permission from the publisher.
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comparable to that of methacholine or histamine bronchial
provocation [111]. However, the specificity of the EIB test for
the diagnosis of asthma is high [109, 110]. By adding inhalation
of cold air during the test, the sensitivity may be increased
while maintaining the specificity [109]. Exercise load should be
kept high to maintain the sensitivity [105].

Interstitial lung disease
ILD represents a broad and heterogeneous group of disorders,
which display some common response patterns to exercise. As
in other pulmonary conditions, exercise intolerance is multi-
factorial, but intolerable exertional symptoms, restrictive
mechanics and severe gas-exchange derangements are often
the primary contributors. Concomitant cardiovascular
abnormalities and peripheral muscle dysfunction may also
contribute [20]. Ventilatory response patterns typical of ILD
have been well described: a reduced ventilatory capacity with
reduced breathing reserve (albeit not as much as in COPD), an
increased V9E–V9CO2 slope, and a characteristically high
breathing frequency and low VT at any given level of V9E.

V9O2,peak has been shown to be reproducible in ILD [112, 113]
and is therefore a useful means to objectively measure exercise
capacity, as is the case in COPD. Again, as for COPD, there are
certain exercise response characteristics that are suggestive of
ILD, although the diagnosis of ILD is rarely made with exercise
testing. Pulmonary gas-exchange abnormalities during exer-
cise may be the only physiological alteration evident in ILD
[114, 115].

Abnormalities in respiratory mechanics

Exercise tolerance in patients with ILD is mostly limited by
restrictive lung mechanics. Thus, there is a reduced ability to
increase VT and thence V9E in response to the metabolic
demands of exercise, consequent to a flattening of the lung
compliance (volume–pressure) curve [116]. Also, the resting IC
and inspiratory reserve volume (IRV) are frequently reduced.
With exercise, end-expiratory lung volume (EELV) encroaches
progressively onto the upper flatter regions of the already-
flatter compliance curve, with further exacerbation of elastic
load. Thus, VT ‘‘saturates’’ early and there is resultant
tachypnoea with exaggerated tidal airflow excursions (see
supplementary material, fig. 2, panel 7). A few small studies
have indicated that IC remains largely unaltered throughout
exercise in ILD, even in patients who exhibit expiratory flow
limitation [117]. Avoidance of further encroachment of VT on
the expiratory reserve volume (ERV) would be expected to
attenuate expiratory flow limitation over lower lung volumes.
However, failure to decrease EELV during exercise (as occurs
in healthy subjects) may have negative consequences
with respect to work-sharing between the inspiratory and
expiratory muscles.

Expiratory flow limitation has been described in some patients
with ILD and may reflect airway obstruction as a result of
smoking or airway involvement in the disease process [116,
117]. The lack of dynamic hyperinflation during exercise in
these patients may reflect the already diminished IC at rest,
such that patients may reach a critically reduced IRV and
terminate exercise before air-trapping can occur.

Dyspnoeic intensity during exercise in ILD patients has been
shown to correlate both with the increasing VT/IC ratio and
with the increased inspiratory effort/displacement ratio (a
crude index of respiratory neuromechanical dissociation) [118].

Arterial oxygen desaturation

As in COPD, arterial desaturation during exercise in ILD
cannot be predicted on the basis of resting lung function. Most
patients with moderate or severe pulmonary fibrosis show
arterial desaturation during exercise [51, 52, 119]. Measuring
the work-rate at which desaturation emerges may be of interest
for patient counselling on demanding physical activities or for
deciding the prescription of ambulatory oxygen therapy.

Cardiac function

Cardiovascular function is abnormal in many patients with
ILD. During exercise, patients with ILD usually have elevated
fC with reduced stroke volume [120, 121], and an elevated
pulmonary artery pressure is common in advanced ILD [122,
123]. Finally, clear cardiac involvement is evident in ,5% of
patients with sarcoidosis during exercise [124].

Pulmonary vascular diseases
In patients with chronic PVDs, such as PPH, pulmonary
hypertension associated with collagen–vascular diseases,
chronic thromboembolic disease and pulmonary vasculitis,
exercise tolerance is usually markedly reduced [22, 69, 125–
127]. This is mostly due to the increased pulmonary vascular
resistance that prevents the normal increase in cardiac output
during exercise [22]. Patients complain of intolerable dyspnoea
on exertion, associated with an increased ventilatory response;
typically this happens even during light physical activities and
in the absence of abnormalities in resting pulmonary function.
Resting DL,CO may be reduced, particularly in more severe
disease, but not invariably in mild-to-moderate disease [128].
The typical pattern of exercise response consists of a reduced
V9O2,peak, hL and peak O2 pulse, a normal or slightly reduced
breathing reserve, a high V9E/V9CO2 (i.e. .34 at hL) with a high
VD/VT and an increased PA-a,O2 [22, 69, 125]. This pattern was
shown to be 88% specific in distinguishing patients with
pulmonary vascular resistances .120 dynes?sec?cm-5 from
those with lower values in a series of 130 patients referred
because of unexplained exertion dyspnoea and fatigue [69].

In most cases, CPET can be performed safely in patients with
PPH for functional and prognostic evaluation [22, 69, 125, 127].
However, exercise testing may not be indicated, or should be
approached very cautiously, in patients with recent history of
syncope or arrhythmias, and/or when signs of right-heart
failure are present [129].

Oxygen transport abnormalities

During exercise, patients with PVD demonstrate significant O2

transport abnormalities: decreased V9O2,peak and V9O2–work-rate
slope (see supplementary material, 1.2) and premature hL.
Recent research in patients with PPH has confirmed that
reductions in V9O2,peak not only reflect a reduced ability to
deliver and utilise oxygen at the tissue level [22] but also
that it is a reproducible measurement [130].
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Ventilatory and gas-exchange abnormalities
Patients with PVD usually display a low V9E and a normal
breathing reserve at peak exercise. In the majority of PVD
patients, a significant feature is the increased V9E at any given
V9CO2, relative to normal [22, 69, 125]. This reflects the
increased physiological dead space consequent to reduced
pulmonary perfusion, and is reflected in the widening of
PA-a,O2 during exercise [22, 50, 69, 125]. A right-to-left shunt
may also contribute to the arterial desaturation during exercise
in a proportion of patients with coexistent patent foramen
ovale [131]. Usually, Pa,CO2 is low at rest and does not fall
further during exercise. This is thought to reflect hypoxaemic
stimulation of carotid chemoreceptors and possibly also vagal
reflex activation via stretch receptors in the pulmonary
circulation [132].

The excessive V9E at low absolute work-rates may also reflect
the influence of a premature lactic acidaemia (i.e. hL is low,
presumably because of cardiac impairment and/or coexistent
deconditioning). The breathing pattern tends to be more rapid
and shallow than normal. This pattern appears not to reflect
restrictive lung mechanics, although little is known about
respiratory mechanics during exercise in PVD. Animal studies
suggest this tachypnoea may result from activation of vagally
innervated mechanoreceptors in the right atrium, pulmonary
vasculature and pulmonary interstitium [133].

Chronic heart failure
Exercise intolerance in CHF is complex and multifactorial [134]
and, as for pulmonary disorders, resting indices of cardiac
function (e.g. EF) fail to predict peak exercise capacity [135].
Cardiovascular factors are believed to be predominant in this
regard and relate to impairment in the cardiac pump with an
inability to increase cardiac output appropriately in response
to the increased metabolic demands of exercise. However,
abnormalities in locomotor muscle circulatory function have
also been well described, including abnormal vasoregulatory
control [136]. Consistent with this view is the demonstration
from large population studies that leg discomfort is the most
common exercise-limiting symptom in CHF [63].

Cardiovascular abnormalities
CPET has proved very useful in the detection and quantifica-
tion of cardiovascular abnormalities during exercise in CHF.
The characteristic findings are a reduced V9O2,peak and hL, a
steeper HR–V9O2 relationship with a reduced fC reserve at peak
exercise and a shallower profile (or even flattening) of the O2

pulse increase with increasing V9O2 (see supplementary
material, 1.4 and fig. 4) [64, 137]. The following can also be
observed: an increased V9E–V9CO2 slope over the moderate-
intensity domain (i.e. up to hL) [4, 138–140]; periodic breathing
at rest and during the early phase of exercise; and expiratory
airflow limitation at peak exercise. It should be noted that the
previously mentioned alterations are not sufficiently specific
for CHF, however; they are observed, for instance, in patients
with pulmonary vascular disorders [22, 69, 125].

V9O2,peak has been found to be reproducible in CHF patients
[141, 142]. A normal V9O2,peak virtually excludes CHF [21].
Exercise testing plays a minor role in the diagnosis of heart
failure, but pulmonary gas-exchange data obtained
during exercise provide important information on a patient’s

functional capacity and distinguish cardiovascular from
pulmonary limitations during exercise [1, 2, 64–68].

As an objective measure of the patient’s global aerobic
capacity, V9O2,peak offers advantages over other indices, such
as the traditional New York Heart Association classification of
functional impairment in CHF based upon a patient’s
symptoms rather than on objective criteria, in assessing the
severity of CHF [143]. Because of the close relationship
between V9O2,peak and the maximal cardiac index, grading
severity by V9O2,peak provides an excellent measure of disease
severity. The exercise capacity of patients with heart failure,
based on V9O2,peak and hL, can be divided into four classes [13].
However, although widely used, this classification can be
criticised because it fails to consider age, sex and weight
differences. Despite this, stratification of ambulatory heart
failure patients using Weber’s classification has improved the
ability to identify those with the poorest prognosis, and who
should be considered for heart transplantation [144]. Guide-
lines for V9O2,peak as a criterion for cardiac transplantation [144,
145] categorise patients for heart transplant according to
V9O2,peak (in mL?kg-1?min-1) as follows. Accepted indication:
,10; probable indication: ,14; inadequate indication: .15.

Ventilatory abnormalities

In recent years, exaggerated ventilatory responses to exercise
have repeatedly been reported in CHF patients [138–140].
V9O2,peak is generally reduced, reflecting the reduced
symptom-limited peak V9O2, and the breathing reserve at peak
exercise is normal or decreased. V9E at any given V9CO2 is
typically increased. Contributory factors include: premature
metabolic acidaemia (reflecting reduced O2 delivery and/or
utilisation) [146, 147]; increased physiological dead space [4];
increased sympathetic system activation via mechano- or
pressor-receptor stimulation in the exercising muscles [148–
152] and, possibly, contributions from cardiopulmonary vagal
and sympathetic reflexes [132, 153, 154]. Several studies have
shown that breathing pattern in CHF is more rapid and
shallow than in healthy controls at any given V9E [4, 155, 156].

A few studies have measured respiratory mechanics during
exercise in CHF [157, 158] Reduced static lung compliance has
been described at rest, even in oedema-free patients [159].
Increased airways resistance and hyperresponsiveness have
also been reported, even in nonsmokers, which may reflect
mucosal oedema [160]. Recent data from the literature suggest
that, despite breathing reserve usually being normal, CHF
patients may develop expiratory airflow limitation at peak
exercise and that this is the cause of exertional dyspnoea [158].
Patients who have resting expiratory flow limitation have been
shown to demonstrate significant dynamic hyperinflation in
exercise when ventilatory demands are increased [157]. The
tachypnoeic breathing pattern responses may also reflect
inspiratory muscle weakness, although the role of the latter
in CHF remains conjectural. Dynamic hyperinflation during
exercise in CHF would be expected to be associated with
‘‘high-end’’ mechanics, as in restrictive lung diseases.

Periodic fluctuations in V9O2 and V9CO2 at rest and at low work-
rates may be observed in patients with CHF, particularly in the
more severe cases [161–163]. The cause is unclear but might

CLINICAL EXERCISE TESTING P. PALANGE ET AL.

192 VOLUME 29 NUMBER 1 EUROPEAN RESPIRATORY JOURNAL



reflect periodic fluctuations in pulmonary perfusion and/or
ventilation.

Congenital heart diseases
As early as 1982, American Heart Association guidelines were
published for the use of exercise testing in children with
cardiovascular diseases [164]. Subsequently, a treadmill pro-
tocol for children with congenital cardiac disorders, charac-
terised by slow increases in both speed and inclination, has
been developed [165]. FREDRIKSEN et al. [166] compared the level
of fitness, as reflected by V9O2 peak, in 196 healthy children
and 187 children with congenital heart diseases (CHD) and
found that children with CHD had lower values that declined
after the age of 12–13 yrs. MCMANUS and LEUNG [167]
discussed how exercise testing could be optimised for
diagnostic purposes in children with various heart diseases
and recommended not only the measurement of V9O2, but also
that the assessment of V9O2 and V9E kinetics may help to
discriminate between pulmonary, cardiovascular and decon-
ditioning causes of exercise limitation. V9O2,peak and the slope
of the V9O2–work-rate relationship have been used to evaluate
improvements in exercise tolerance after heart surgery [168,
169]. The use of exercise testing in assessing the long-term
prognosis of children with CHD has not been reported.

UTILITY OF EXERCISE TESTING IN PROGNOSTIC
EVALUATION
CPET variables, as well as 6-MWD (table 1) have proven useful
in the prognostic evaluation of patients with pulmonary and
cardiac diseases (e.g. COPD, ILD, PPH, CF, CHF, candidacy for
transplantation and for thoracic surgical procedures), and
these are now a main indication for exercise testing in these
patient groups. From the available literature, exercise tolerance
(V9O2,peak, 6-MWD) and other CPET variables (V9E–V9CO2

slope, hL, Sp,O2) seem to be better predictors of prognosis than
resting lung function and cardiac function.

Exercise tolerance is well recognised as a good predictor of
mortality in healthy subjects, across ages ranging from young
adults to elderly [170–173]. This also appears to be the case in a
wide range of pulmonary and cardiovascular disease states.
CHF currently provides the best instance of the establishment of a
comprehensive cluster of CPET-based prognostic variables.

The purpose of this section is to consider prognostic value of
CPET-related and other exercise tests in establishing the
prognosis of patients with chronic respiratory and cardiac
diseases. Data are available concerning the value of exercise
indices in COPD, ILD, PVD, CF and CHF. Several other disease
conditions for which CPET-based variables may provide good
prognostic value fall outside the scope of the present
discussion and are not discussed here.

Chronic obstructive pulmonary disease
Traditionally, FEV1 and age have been regarded as the most
important predictors of mortality in COPD [174]. Other resting
indices have been found to predict the prognosis of these
patients, the most important being BMI [175, 176], IC/total
lung capacity (TLC) ratio [177], arterial hypoxaemia during
sleep [178], pulmonary artery pressure [179], mixed venous
partial pressure of oxygen (PO2) [180] and the degree of
functional breathlessness [181].

In the past few years, COPD has come to be viewed as a
systemic disorder in which many extrapulmonary aspects in
addition to airflow limitation can influence survival. Skeletal
muscle dysfunction is among these [182–184]. Therefore, there
has been some focus on the prognostic value of correlates of
exercise tolerance. The utility of CPET in evaluating disability
and impairment in COPD patients has been established.
However, the relationship between survival and CPET
responses is not yet well established.

V9O2 peak
In COPD patients, OGA et al. [185] reported that V9O2,peak is the
most significant predictor of 5-yr mortality. In particular,
V9O2,peak ,654 mL?min-1 was associated with 60% mortality at
5 yrs and V9O2,peak 793–995 mL?min-1 was associated with 5%
mortality at 5 yrs (fig. 2).

Recently, HIRAGA et al. [186] conducted a large retrospective
study focused on the prognostic value of many CPET
variables, including directly measured Pa,O2. They confirmed
the prognostic value of V9O2,peak, reporting a 5-yr mortality of
62% for V9O2,peak ,10 mL?min-1?kg-1. However, the severity of
exercise-induced hypoxaemia evaluated by the slope of the
Pa,O2–V9O2 relationship (DPa,O2/DV9O2 or ‘‘Pa,O2 slope’’) was
the independent prognostic factor most closely associated with
the survival time. In particular, a Pa,O2 slope ,-80 mmHg?L-1?

min-1 was associated with an elevated mortality risk, with
,20% survival at 5 yrs.

Timed walking tests
The earliest data regarding the ability of field tests to predict
mortality refer to post-rehabilitation outcomes of patients with
advanced pulmonary disease. GERARDI et al. [187] concluded
that the post-rehabilitation 12-min walking test distance was
the strongest predictor of survival up to 3 yrs post-intervention
in individuals with predominantly moderate-to-severe COPD,
independent of the cause of death. This observation was later
confirmed by BOWEN et al. [188], using the 6-MWT. A recent
study [189] focused on the decline of 6-MWD over 2 yrs in
COPD patients; the authors of that study found that the
magnitude of change in the group that survived was
significantly lower than in nonsurvivors. Very recently, the 6-
MWT distance was integrated in a grading system called
BODE (Body mass index, airflow Obstruction, Dyspnoea,
Exercise capacity), formulated to categorise and predict
outcome in patients with COPD. In a cohort of 625 patients,
CELLI et al. [190] have prospectively validated the BODE index
as a good predictor of death from any cause and from
respiratory causes after correction for coexisting conditions.
The authors reported that the index was a significantly better
predictor of mortality than FEV1 alone.

The pre-operative value of exercise tests as an outcome
measure in lung-volume reduction surgery (LVRS) has been
explored. SZEKELY et al. [191] reported that a 6-MWD ,200 m
before or after pulmonary rehabilitation is an excellent pre-
operative predictor of unacceptable post-operative mortality at
6 months, with a specificity of 84%. Similarly, a randomised
controlled study by GEDDES et al. [192], to evaluate the effect of
LVRS in patients with emphysema, indicated that a pre-
operative shuttle walk test (SWT) distance ,150 m was a
predictor of high peri-operative mortality. Interestingly, in the
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National Emphysema Treatment Trial [193], exercise capacity
was used to identify the subgroup of patients for whom LVRS
has the most favourable survival and cost-effectiveness
compared with medical therapy. This important trial reported
that patients with a pre-operative peak work-rate ,25 W for
females and ,40 W for males who also had predominantly
upper-lobe emphysema manifest significant improvements in
survival and functional outcomes at 3 yrs, compared with
medical treatment.

Risks of peri-operative complications are often stratified by
V9O2,peak. A value below a threshold of 15 mL?min-1?kg-1

indicates a significant risk of complications. Data on field
exercise tests are limited, however. For patients with COPD, a
6-MWD of 250 m would correspond approximately to this
threshold. KADIKAR et al. [194] retrospectively observed the
sensitivity and specificity of the 6-MWT to predict death in 145
patients who had undergone lung transplantation; a distance
,400 m appeared be an appropriate marker for listing patients
for transplant. For LVRS, the threshold for a successful
outcome has been reported to be ,150 m for the SWT [192]
or 200 m for the 6-MWT [191].

Interstitial lung diseases
In patients with ILD, CPET may be particularly useful in
detecting exercise-related ventilatory and gas-exchange
abnormalities (e.g. arterial desaturation and an elevated
ventilatory requirement) early in the course of the disease
when resting lung-function measurements appear to be
normal. Perhaps more importantly, arterial desaturation and
other CPET indices have proven useful in predicting the
prognosis of patients with ILD.

Arterial oxygen desaturation
A large study conducted by KING et al. [195] focused on
developing a clinical–radiological–physiological (CPR) scoring
system that predicts survival in patients with ILD with biopsy-
proven usual interstitial pneumonia (UIP). Pa,O2 at peak
exercise was found to be a significant independent predictor
of survival, accounting for as much as 10.5% of the maximum
CPR score in the completed model. LAMA et al. [52] reported

that exercise-induced desaturation ,88% during the 6-MWT
was strongly predictive of mortality in patients with ILD and
biopsy-proven UIP.

V9O2,peak and V9E/V9CO2

A retrospective study of 41 patients with a clinical diagnosis of
idiopathic pulmonary fibrosis reported that Pa,O2 slope,
V9O2,peak, O2 pulse at peak exercise and V9E/V9CO2 at peak
exercise are significant predictors of survival [196].
Interestingly, among the above indices, Pa,O2 slope was
correlated most closely with the survival rate.

The present authors know of no studies regarding the
prognostic value of pre-operative exercise indices in relation
to survival after lung transplantation in ILD patients.

Primary pulmonary hypertension
PPH is a relatively rare condition associated with high
mortality. In recent years, new drugs have been used (e.g.
prostacycline, bosentan), aimed at reducing the degree of
pulmonary hypertension, although lung transplant remains
the only definitive cure. In the past, invasive techniques (i.e.
right-heart catheterisation with measurement of pulmonary
artery pressure and cardiac output) have been used to assess
the severity of PPH, the response to interventions and the
timing of transplant. More recently, exercise testing (often
considered unacceptably hazardous in the past) has been used
to define disease severity and prognosis.

V9O2,peak

WENSEL et al. [127] studied the prognostic value of V9O2,peak in
patients with PPH. They reported that PPH patients with
V9O2,peak f10.4 mL?min-1?kg-1 have a 50% risk of early death
at 1 yr and 85% at 2 yrs, whereas patients with V9O2,peak

.10.4 mL?min-1?kg-1 have a 10% risk of early death at 1 yr and
30% at 2 yrs. In addition, they reported that patients who had
both V9O2,peak f10.4 mL?min-1?kg-1 and peak systolic blood
pressure ,120 mmHg had a very poor survival rate at 12 months
(23%), whereas patients with one or none of these risk factors had
better survival rates (79% and 97%, respectively; fig. 3).

TABLE 1 Exercise indices that have been shown to predict
the prognosis of patients with chronic respiratory
and cardiac diseases

COPD ILD PVD CF CHF

V9O2,peak + + + + +
hL +
V9E–V9CO2 slope and

V9E–V9CO2 at hL

+ ++

Arterial desaturation ++ + +
6-MWD + + +

COPD: chronic obstructive pulmonary disease; ILD: interstitial lung disease;

PVD: pulmonary vascular disorders; CF: cystic fibrosis; CHF: chronic heart

failure; V9O2,peak: peak oxygen uptake; hL: lactate threshold; V9E–V9CO2:

ventilatory equivalent for carbon dioxide; 6-MWD: 6-min walking test distance.

+: sensitive; ++: more sensitive.
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FIGURE 2. Kaplan–Meier survival curves using quartiles of peak oxygen

uptake (V9O2,peak). ––––: V’O2,peak .995 mL?min-1 (n537); ????????: V’O2,peak 793–

995 mL?min-1 (n538); ------: V’O2,peak 654–792 mL?min-1 (n538); – – –: V’O2,peak:

,654 mL?min-1 (n537). Reproduced from [185] with permission from the publisher.
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6-MWD and arterial desaturation

In PPH patients, 6-MWT performance correlates well with
V9O2,peak. Again, there appears to be some prognostic value for
the 6-MWT. Patients walking ,332 m had a significantly lower
survival rate than those walking further. In particular, in the
short-distance group the survival rate at 20 months was 20%,
compared with the long-distance group in which there was a 90%
survival rate [197]. Exercise-induced hypoxaemia as measured
by pulse oximetry during the 6-MWT was observed to be
significantly predictive of mortality in patients with PPH [198].

Cystic fibrosis
Many variables have been examined and some have proven to
have a good predictive value for prognosis in CF patients.
Indices of pulmonary function at rest, in particular FEV1 (as %
pred or as the magnitude of its deterioration over time) have
been shown to be good predictors of mortality. FEV1 along
with Pa,O2, Pa,CO2, age and sex are the major indices used to
classify the severity of CF and for referral for lung transplanta-
tion [199–202].

There are, however, differences in clinical outcome among CF
patients with similar resting functional indices. Other factors
have therefore been explored, such as malnutrition (e.g. low
BMI) and recurrent infections of the respiratory tract with
polyresistant pathogens (e.g. Pseudomonas spp., Burkholderia
cepacia) [203–206].

Physical activity is regarded as particularly important in
children with CF and assessment of physical fitness as an
important measure of prognosis. The degree of fitness will (in
addition to the level of physical activity) depend upon the
progression of the pulmonary part of the disorder [207–209].

V9O2 peak and ventilatory indices
Many studies have confirmed that the value of V9O2,peak is
equal or superior to that of resting tests in the stratification and
prognostic evaluation of patients with CF. NIXON et al. [203]
followed 109 CF patients, age of 7–35 yrs, for 8 yrs after initial

exercise testing and calculated survival rates. Patients with the
highest levels of aerobic fitness (V9O2,peak o82% pred) had a
survival rate of 83%, compared to 51% and 28% for patients
with middle (V9O2,peak, 59–81%) and lowest (V9O2,peak f58%
pred) fitness levels, respectively. After adjustment for other
risk factors, patients with higher aerobic fitness levels were
more than three times as likely to survive as patients with
lower fitness levels. STANGHELLE et al. [210] showed comparable
findings in their 8-yr follow up of 8–16-yr-old CF boys.
MOORCROFT et al. [211] have found that V9O2,peak, peak work-
rate, V9E,peak and V9E/V9CO2 at peak exercise are all significant
predictors of mortality. In contrast to previous studies,
however, they found FEV1 to be a better predictor than
exercise measures.

Arterial desaturation and walking distance

BALFOUR-LYNN et al. [212] compared a 3-min step test with a 6-
MWT and found both useful in the assessment of exercise
tolerance in children with CF, whereas SELVADURAI et al. [213]
and POUESSEL et al. [214] validated a shuttle test in CF children
and found this a useful test.

In field test studies, the indices most commonly used for
patient evaluation are the distance walked, the lowest Sp,O2

and fC [215]. Some authors have found that V9O2,peak in
patients with CF was correlated with 6-MWD, with the
correlation coefficient increasing if age, weight, FVC, FEV1

and DL,CO were added to the prediction equation [216, 217].
However, other authors have found no correlation between
distance covered in a 12-MWT and survival [202]. Other
authors reported that an elevated breathing reserve at hL

(defined as V9E at hL divided by the MVV) is associated with
an increased risk of death in CF patients awaiting lung
transplantation [218]. The utility of this breathing reserve index
rests on the fact that it combines a resting measure of lung
function with a measure of exercise capacity that does not
depend on patients attaining the point of symptom limitation.

Chronic heart failure
Exercise testing in cardiac patients has been used extensively
to confirm the clinical suspicion of coronary ischaemia and,
perhaps more importantly, to establish prognoses [219, 220].
Guidelines for the indications and interpretation of exercise
testing in patients with coronary artery disease are available [68].

More recently, CPET has been increasingly used to assess the
degree and mechanism of exercise intolerance in patients with
heart disease. V9O2,peak, hL, V9E/V9CO2 and other physiological
variables have been used as measures of functional status in
patients with CHF. Perhaps more importantly, several studies
have been published on the usefulness of CPET measurements
in the prognostic evaluation of CHF patients. What is not
entirely clear, however, is how b-adrenergic blockade therapy,
through effects on indices such as V9O2,peak and V9E–V9CO2

slope, may alter prognostic prediction in CHF. However,
PETERSON et al. [221] and O’NEILL et al. [222] have recently
reported the prognostic value of peak V9O2 to be unaffected
with b-blockade in CHF, although the latter authors have
suggested that the 14 mL?kg-1?min-1 cut-off for cardiac
transplantation may require re-evaluation in this setting.
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FIGURE 3. Kaplan–Meier cumulative survival curves for 3-yr survival of 70

patients with primary pulmonary hypertension. Patients with a peak oxygen uptake

(V9O2,peak) .10.4 mL?kg-1?min-1 (––––) versus f10.4 mL?kg-1?min-1 (????????).

Reproduced from [127] with permission from the publisher.
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V9O2,peak

V9O2,peak has consistently demonstrated prognostic signifi-
cance in CHF [223, 224], with lower V9O2,peak predicting higher
mortality and the need for heart transplant. MANCINI et al. [225]
reported that V9O2,peak .14 mL?min-1?kg-1 is associated with
94% survival at 1 yr and 84% survival at 2 yrs; while patients
with V9O2,peak f14 mL?min-1?kg-1, who were rejected for
transplant for noncardiac reasons, had survival rates at 1 and
2 yrs of 47% and 32%, respectively. KLEBER et al. [226] reported
a better prognosis at 30 months for patients with V9O2,peak

.45% pred. SZLACHCIC et al. [227] reported that V9O2,peak

,10 mL?min-1?kg-1 is associated with 77% mortality at 1 yr,
while in patients with V9O2,peak .10 mL?min-1?kg-1 mortality
rate at 1 yr is ,20%. More recently, GITT et al. [138] reported
that CHF patients with V9O2,peak f14 mL?min-1?kg-1 (or f50%
pred) had a three-fold increased risk of death at 6 months
[138]. ARENA et al. [228] confirmed that V9O2,peak ,14 mL?min-

1?kg-1 conveyed a poor prognosis (sensitivity 84%; specificity
48%). In some of the previously-mentioned studies [138, 227,
228], it was observed that the combination of CPET variables,
particularly V9O2,peak and V9E–V9CO2 slope, better identifies
patients at high risk of early death from CHF than V9O2,peak

alone (see below).

There is now a general consensus that patients with V9O2,peak

,14 mL?min-1?kg-1 should be considered for heart transplanta-
tion, as originally stated in the report of the 24th Bethesda
Conference [145].

Lactate threshold
Because of the poor cardiovascular adaptation, the develop-
ment of lactic acidaemia in patients with CHF occurs
prematurely early in the course of an incremental exercise
test. Some authors prefer to use hL values, rather than
V9O2,peak, to assess patients’ functional status instead of
V9O2,peak because (in contrast to hL) the latter is highly effort-
dependent. However, only one study has examined the
prognostic value of hL in CHF patients: GITT et al. [138]
demonstrated that hL ,11 mL?min-1?kg-1 is associated with a
mortality risk ratio at 6 months of 2.7 (similar to the risk ratio
of 2.9 for V9O2,peak f14 mL?min-1?kg-1).

V9E/V9CO2 at hL and V9E–V9CO2 slope
Evidence has been provided about the utility of V9E/V9CO2

measurements in patients with CHF. Unless there is a
concomitant lung disease that worsens the alveolar ventila-
tion/perfusion ratio, an increase in V9E/V9CO2 usually reflects
an impairment in lung gas diffusion and/or the development
of pulmonary hypertension during exercise. As emphasised
earlier, Pa,CO2 should be measured to rule out the possibility
that an increased V9E/V9CO2 and /or V9E–V9CO2 slope reflects
hyperventilation.

There has been recent interest in using the V9E–V9CO2 slope, in
addition to V9O2,peak, to assess the prognosis of patients with
CHF [138–140, 227, 229–232]. As described in the supplemen-
tary material (section 1.5), normal values for the V9E–V9CO2

slope are in the region of 23–25 (i.e. below the respiratory
condensation point). A V9E–V9CO2 slope .130% pred is
associated with a 1-yr mortality rate .40% [226]. In a study
of 470 patients, an abnormal elevation in the peak V9E/V9CO2

o44.7 was the strongest predictor of death during a 1.5-yr

follow-up [232]. A V9E–V9CO2 slope .34 has been shown to be a
better predictive index for early death (6 months) from CHF
than V9O2,peak [138]. An elevated ventilatory response to
exercise can reflect decreased ventilatory efficiency (increased
VD/VT), and is predictive of outcome in patients with preserved
exercise capacity. In another study of 123 patients with a V9O2,peak

o18 mL?min-1?kg-1, the 3-yr survival was significantly lower in
those with a peak V9E/V9CO2 o34 (57% versus 93% for V9E/V9CO2

f34) [140]. A V9E–V9CO2 slope .34 is a significantly better
predictor of both 1-yr cardiac-related mortality and 1-yr cardiac-
related hospitalisation than V9O2,peak [228].

Walking tests

The utility of the 6-MWT has been examined in mild-to-
moderate [233] and more severe [234] CHF patients. Both
studies associated a distance ,300 m with a reduced medium-
to-long-term overall survival and reduced event-free survival. In
more severe CHF patients, baseline 6-MWT distance was a strong
independent predictor of mortality and hospitalisation at 1 yr
[235]. The feasibility of the SWT for selection for heart trans-
plantation has been documented; a distance of .450 m equates to
a V9O2,peak for treadmill walking .14 mL?min-1?kg-1 [236].

Combinations of variables

GITT et al. [138] examined the prognostic value of CPET
variables, alone or in combination in a large cohort of CHF
patients. They reported that hL ,11 mL?min-1?kg-1 and V9E–
V9CO2 slope .34 combined better identified patients at high
risk for early death than V9O2,peak (f14 mL?min-1?kg-1 or
f50% pred) alone or in combination with hL (,11 mL?min-1?

kg-1) or with V9E–V9CO2 slope (.34).

In studies that used multivariate Cox regression analysis, V9E–
V9CO2 slope appears to be the most powerful predictor of event-
free survival, followed by V9O2,peak (table 2) [138, 226, 228].

UTILITY OF EXERCISE TESTING IN DEFINING
RESPONSES TO INTERVENTIONS
CPET variables as well as distance covered during walking
tests have proven to be useful in clinical trials evaluating
interventions in patients with pulmonary and cardiac diseases
(e.g. COPD, ILD, CF, PPH, CHF). This is now the main
indication for exercise testing in these patient groups. CPET
variables, as well as distance covered during walking tests,
have proven to be useful in individual prescription of
pulmonary rehabilitation and O2 supplementation (by exercise
testing pre- and post-intervention), and also for prescription of
exercise training. These are now main indications for exercise
testing in these patient groups. Indeed, the use of an initial
CPET-based assessment prior to entering an exercise training
programme is to be strongly recommended.

Exercise tolerance has become an important outcome measure
in patients with COPD, CHF and other chronic diseases,
mostly because evidence has been provided that exercise
testing is superior to other functional measurements obtained
at rest (e.g. FEV1, left ventricular EF) in demonstrating the
positive effect of a specific intervention. In particular, exercise
testing has been widely used in cardiorespiratory disease to
explore the short- and long-term benefits of exercise-based
rehabilitation, nutritional or hormonal therapy, drug therapy,

CLINICAL EXERCISE TESTING P. PALANGE ET AL.

196 VOLUME 29 NUMBER 1 EUROPEAN RESPIRATORY JOURNAL



O2 or heliox breathing, and surgical interventions such as
LVRS and transplantation.

What is the ‘‘best’’ measure of improvement in exercise
tolerance?
Laboratory-based tests allow evaluation of therapeutic effects
mostly by detecting improvement of exercise capacity as well
as characterising ventilatory, gas-exchange, circulatory and
metabolic response patterns, but are limited by the setting and
by expensive equipment. Walking tests can be used easily in a
field setting and are inexpensive, but they provide less
information regarding the specific physiological responses
underlying altered exercise capacity.

Different exercise protocols and different exercise measures
have been used to quantify the improvement of exercise
tolerance in patients with cardiorespiratory diseases, although
the laboratory symptom-limited incremental test, with mea-
surement of V9O2,peak or peak work-rate, and walking tests,
with measurement of maximal distance walked, have been
most popular. More recently, indices reflecting the patient’s
endurance capacity have succesfully been used. The most
common and popular of these is the time to symptom
limitation on a constant-load cycle-ergometer test, although a
few studies have actually defined the power–duration relation-
ship and estimated critical power (CP; see supplementary
material, 2.2 and fig. 8).

Comparisons between incremental and endurance cycle-
ergometry tests indicate that the incremental exercise test is
excellent at describing the profile of system abnormality but
less suitable than endurance cycle-ergometry for discriminat-
ing the outcome of interventions in terms of improved exercise
capacity. A necessary prerequisite for employing constant-load
exercise testing as an outcome measure in pulmonary
rehabilitation, and also in drugs studies, is individualising
the work-rate to be performed in the pre-rehabilitation study.
Power–duration principles [237–241] dictate that the work-rate

to be used must be above CP (see supplementary material, 2.2
and fig. 8). It should be noted, however, that after training this
work-rate may be below the pre-training CP (i.e. the patient
may be able to perform the constant-load task for a relatively
long period of time; see supplementary material, fig. 9). In
COPD, there is increasing evidence that high-intensity
constant-load endurance protocols with measurement of tlim,
symptoms (e.g. dyspnoea and leg fatigue) and pertinent CPET
variables (e.g. V9O2, V9E–V9CO2 slope respiratory frequency, IC,
fC) at ‘‘isotime’’ are superior to other protocols (e.g. V9O2,peak on
maximal intemental test, distance on 6-MWT) in the evaluation
of the effects of therapeutic interventions [242].

In choosing an appropriate exercise test and a specific outcome
marker, it is important to know the relationship between the
specific exercise response and the local or systemic impairment
intended to be modulated by the specific intervention. For
example, MAN et al. [88] showed in COPD patients that leg
effort assessed by subjective scoring on a Borg scale is a
frequent symptom during incremental and endurance cycle-
ergometry, but infrequent during incremental and endurance
walking. This would imply that interventions targeted speci-
fically at the skeletal muscles should preferably be evaluated
by cycle-ergometry and not by walking tests. Indeed, a recent
study [243] in COPD patients on systemic corticosteroid
treatment showed that, relative to exercise training alone,
supplementation with anabolic steroids was reflected in
enhanced improvement in peak exercise capacity during
incremental cycle-ergometry, but not in improved 6-MWD. A
complicating factor in a multicomponent disease like most
chronic cardiorespiratory diseases, such as COPD or CHF, may
be that in individual patients different factors dominate
impaired exercise capacity.

Effective rehabilitative interventions will not only be reflected
in improved effort-dependent measures of exercise tolerance
(e.g. V9O2,peak, peak work-rate, tlim) but will also yield altered
physiological responses to identical exercise tasks. These
alterations can be detected in both incremental and constant-
load cardiopulmonary exercise testing. Commonly used
measures predictive of improved responses include dynamic
hyperinflation, arterial lactate concentration, V9E, V9E/V9CO2,
breathing pattern and Sp,O2.

Clearly, task-specificity also needs to be considered. For
instance, interventions specifically aimed at improving upper
extremity muscle endurance may be reflected in improved
endurance time during arm-ergometry but not during cycle-
ergometry.

For use in clinical trials or in individualised patient care, it is
also important to know the minimal clinically important
change in the different exercise tests. Using the 6-MWT,
REDELMEIER et al. [244] proposed that a meaningful difference in
performance was 54 m for patients with COPD. The minimum
clinically important difference has not yet been published for
the incremental or endurance shuttle walk test, or for cycle-
ergometry.

Besides considering the information that can be retrieved from
an exercise test, other factors need to be considered, such as
standardisation of procedures to minimise variation, to avoid
learning effects and to limit confounding influences related to

TABLE 2 Cox regression analysis, including sex, age, left
ventricular ejection fraction, and New York Heart
Association class, for calculation of risk of death
at 6 months

Cardiopulmonary variable Risk ratio 95% CI p-value

V9O2,peak f14 mL?kg-1?min-1 2.9 1.5–5.4 0.002

V9O2,peak f10 mL?kg-1?min-1 2.1 1.1–4.3 0.04

V9O2,peak f50% normal 2.0 1.1–3.7 0.03

hL ,11 mL?kg-1?min-1 2.7 1.3–5.6 0.007

V9E–V9CO2 slope .34 2.7 1.5–5.1 0.001

V9O2,peak f14 + hL ,11 mL?kg-1?min-1 3.2 1.5–6.7 0.003

V9O2,peakf14 mL?kg-1?min-1+V9E–V9CO2

slope .34

4.5 2.1–10 ,0.001

hL ,11 mL?kg-1?min-1+V9E–V9CO2

slope .34

5.1 2.0–12.7 0.001

CI: confidence interval V9O2,peak: peak oxygen uptake; hL: lactate threshold;

V9E–V9CO2 slope: slope of the increase in ventilatory equivalent for carbon

dioxide. Reprinted from [138] with permission from the publisher.
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motivation. This may be particularly relevant when the tests
need to be used in multicentre clinical trials.

Symptoms
The severity of exertional dyspnoea, but also leg fatigue, is
usually assessed by using a Borg scale or by a visual scale
(VAS) [245, 246]. The Borg scale has been used extensively to
detect changes in dyspnoea after therapeutic interventions,
particularly in COPD patients [247–254].

Symptom-limited incremental test
Until recently, most of the studies looked at changes in
V9O2,peak, peak work-rate and hL (and also V9E,max and
maximum fC) with symptom-limited incremental CPET as
primary outcome variables. It should be recalled that as peak
work-rate is dependent on the work-rate increment rate (see
supplementary material, 1.1 and fig. 1), interpretation of
intervention-induced changes should take this into account.
In most studies, the improvement in V9O2,peak and/or peak
work-rate is usually modest (,5%) and not unequivocally
confirmed (e.g. the improvement in V9O2,peak after rehabilita-
tion in COPD), particularly in patients with the most advanced
disease. In some controlled studies, V9O2,peak increased
significantly [255–258], while other studies failed to observe a
significant amelioration [259, 260]. hL has also been used as an
outcome variable, particularly in CHF patients. As described
earlier, the potential advantage of measuring hL during CPET
is that maximal effort is not required; the results of the studies
that have used hL are again not unequivocal. In COPD patients,
controlled studies did not observe changes in maximal fC or in
maximal V9E [258, 259, 261].

Endurance time and physiological measurement at
standardised time
Endurance time during high-intensity exercise (i.e. above CP;
see supplementary material, 2.2) is increasingly used to assess
exercise tolerance before and after a therapeutic intervention.
Work-rates used in recent clinical studies were 75–80% of
V9O2,peak or peak work-rate measured during symptom-limited
incremental CPET. In addition to tLIM, comparisons of
symptom intensity (e.g. dyspnoea, leg effort) or physiological
variables of interest (e.g. IC, V9E, V9O2, V9E/V9CO2, fC) at a
standardised time (isotime) have proved very useful in
identifying the underlying physiological mechanisms respon-
sible for increases in exercise tolerance induced by a particular
intervention. Recent data from the literature support the notion
that in COPD patients, endurance tests are more sensitive than
other exercise protocols in detecting exercise-related physio-
logical changes induced by interventions, and are thus very
useful in clinical practice (fig. 4) [242].

In recent years, high-intensity constant-load protocols (e.g. 75–
80% peak work-rate) have been used to demonstrate the
positive effects of interventions such as bronchodilator therapy
[252, 253, 262]; oxygen [263] and heliox [254] administration
during exercise; bronchoscopic lung volume reduction [264];
and rehabilitation [265, 266]. By using this approach, it is
possible to demonstrate a significant improvement in endur-
ance time, mostly due to a reduction in lung dynamic
hyperinflation and dyspnoea at isotime (table 3). The ‘‘high-
intensity’’ exercise endurance protocol should therefore now

be considered the test of choice in evaluating the effects of
therapeutic interventions in COPD.

Moderate constant-load exercise
Moderate constant-load tests (i.e. below hL), on a cycle-
ergometer or on a treadmill, lasting 6–8 min have been used
to detect reductions in symptom scores and also in assessing
the V9E and fC responses to training (see supplementary
material, 2.1). These tests have been shown to be reliable and
reproducible [267]. After exercise training, significant reduc-
tions in ventilation [255, 256, 259, 261, 268] and lactate levels
[255, 261, 268] at identical submaximal work-rates have been
observed. These findings suggest an improvement in aerobic
metabolism [255, 269] and are in agreement with the observa-
tion of a significant increase in oxidative enzyme levels (16–
40%) in the quadriceps femoris muscle after a strenuous
exercise programme [261]. Positive cardiac adaptation at
submaximal exercise, identified by a lower fC, has been
demonstrated in controlled [255–257, 270] and uncontrolled
[261, 271] studies.

The extent of speeding of the response kinetics of V9E and V9O2

(see supplementary material, 2.1 and fig. 7) has also been used
to detect improvements in oxygen transport and/or skeletal
muscle metabolism after a specific intervention [255, 271, 272].
The V9O2 kinetics reflect the overall efficiency of the oxygen
transport system including muscle oxidative capacity and, in
COPD, seem to be influenced by the oxygen delivery to the
working muscles [273].

Walking tests
This approach has been used extensively both in patients with
respiratory and in those with cardiac disease. The 6-MWT has
been widely used in many large trials exploring the benefits of
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FIGURE 4. Changes in various measures of exercise performance after

oxitropium bromide in three exercise tests. Changes are expressed as the

percentage change versus placebo. Values are expressed as mean¡SE. h: 6-

min walking distance (6-MWD); &: progressive cycle-ergometry; &: cycle

endurance test. WR,max: maximal work-rate; V’O2,max: maximal oxygen uptake;

V’CO2,max: maximal carbon dioxide output; V’E,max: maximal minute ventilation. *:

p,0.05; **: p,0.01; ***: p,0.001 versus placebo. Reproduced from [242] with

permission from the publisher.
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rehabilitation, pharmaceutical intervention, oxygen supple-
mentation and surgery in cardiorespiratory disease. The 6-
MWT has been shown to be a submaximal high-intensity
constant-load test [274, 275]. The test is used to investigate the
effects of interventions on patients’ walking endurance
capacity. Measurements of Sp,O2 and fC may be included to
detect physiological improvements associated with improve-
ments in exercise tolerance.

REDELMEIER et al. [244] proposed that a meaningful difference in
performance for patients with COPD was 54 m. This indicates
the level at which the patient would appreciate an improve-
ment in function capacity. TROOSTERS et al. [276] reported a
mean increase of 52 m in a study of the short- and longer-term
benefits of pulmonary rehabilitation delivered over a 6-month
period. Results from similar rehabilitation studies confirm the
magnitude of change [277, 278]. Pharmaceutical interventions
have employed the 6-MWT as an outcome measure with some
success [279]. The test has also been used as an outcome
measure in rehabilitation for CHF [280] where a modest
change in walking distance after 3 months of exercise training
was observed.

The incremental SWT (ISWT) has not been extensively
incorporated into pharmacological studies, but has been cited
in a number of significant rehabilitation studies [281, 282].
There is considerable evidence that the test is sensitive to
change. However, the minimum clinically important difference
has not yet been published. A large rehabilitation study
reported mean changes of 75.9 m [281]. In a large group of
patients with COPD, the SWT was sensitive to the adminis-
tration of formoterol and ipratopium bromide [283, 284]. The
endurance SWT (ESWT) seems more sensitive to change after a
course of rehabilitation than the ISWT. REVILL et al. [285]
secured a mean increase in duration of 160%, compared with
the ISWT change of 32%.

The administration of ambulatory oxygen has been described
in many international guidelines. This is largely based upon
the response to a standard field exercise test. The response is
suggested to be either a 10% increase in distance or 10%
reduction in dyspnoea with supplemental oxygen. The mode
of exercise testing may be important. It appears that walking
induces a greater degree of arterial desaturation than cycling
[54, 86, 88, 286]. The 6-MWT has previously been shown to be

sensitive to the administration of supplemental oxygen [287,
288]. The ISWT is responsive to the acute administration of
oxygen [289]. However, the ESWT appears to demonstrate a
greater magnitude of change to supplemental oxygen [290].

EVIDENCE-BASED INDICATIONS TO EXERCISE
TESTING IN CLINICAL PRACTICE
The Task Force members felt that it was important to indicate
the level of recommendation for the most relevant indications
for exercise testing in clinical practice, on the basis of the
arguments discussed and references provided. For this
purpose an appropriate grading system, commonly used for
recommendations in evidence-based guidelines, was utilised
[291]. The grade of recommendation (A5highest, D5lowest),
based on the levels of evidence is reported in table 4 for CPET
and in table 5 for walking tests. It should be noted that with the
use of this rigorous system, grade A is relatively rare and grade
B is usually considered the best achievable.

Clear evidence now exists for the utility of CPET, as well as for
other exercise test protocols, such as timed walking tests and
constant-load tests, in evaluating the degree of exercise
intolerance, the prognosis and the effects of therapeutic
interventions in adult patients with chronic lung disease
(COPD, ILD, PPH), in children and adults with CF, in children
and adults with EIB, in adults with CHF, and children and
adolescents with CHDs. No consistent data are available in the
literature on the clinical impact of CPET in diseases other than
those mentioned above.

In clinical practice, CPET has not proven useful in diagnosing
specific conditions. However, characteristic profiles of cardio-
pulmonary and gas-exchange response, discerned using CPET,
may help in the differential diagnosis between pulmonary and
cardiac limitation to exercise.

CPET should be considered the gold standard for evaluating
maximal/symptom-limited exercise tolerance in patients with
pulmonary and cardiac disease. Importantly, cardiopulmonary
and gas-exchange response profiles measured at CPET are
reproducible in the short term and in the longer term they can
reflect disease progression. Field testing, often in combination
with limited physiological measurements, is also a useful
approach to assessing exercise intolerance in patients who may
not need comprehensive CPET-based testing. CPET variables,

TABLE 3 Effects of different therapeutic interventions on endurance time, lung hyperinflation and dyspnoea in chronic
obstructive pulmonary disease

Type of intervention [Ref.]

Tiotropium [252] Oxygen [263] Heliox [254] Rehabilitation [266]

Work-rate % max 75 75 80 75

FEV1 % pred 42 31 38 36

D Endurance time % +21 +145 +115 +175

D IC at isotime % +12 +24 +12 +13

D dyspnoea at isotime % -14 -40 -25

FEV1: forced expiratory volume in one second; % pred: % of predicted value; IC: inspiratory capacity; D: changes at isotime expressed as a percentage of control

condition.
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as well as distance covered during 6-MWT, have proven to be
useful in the prognostic evaluation of patients with pulmonary
and cardiac diseases, and these are now a main indication for
exercise testing in these patient groups.

From the available literature, exercise tolerance and other
CPET variables appear to be better predictors of prognosis
than resting lung and/or cardiac function. However, studies
have not yet been carried out to look at combinations of
variables.

CPET variables, as well as distance covered during walking
tests, have proven to be useful in clinical trials evaluating
interventions in patients with pulmonary and cardiac diseases.
This is now the main indication for exercise testing in these
patient groups. It should be noted that, even if a clinical trial
were originally designed to evaluate the effect of an interven-
tion and the trial included exercise tolerance as one of the main
outcomes, this can still provide indirect evidence of the
interventional utility of exercise testing.

CPET variables as well as distance covered during walking
tests have proven to be useful in the individual prescription of
pulmonary rehabilitation and oxygen supplementation (by
exercise testing pre- and post-intervention), and also for safety

for subsequent exercise training (e.g. ‘‘healthy’’ elderly
subjects). These should now be considered main indications
for exercise testing in these patient groups.

V9O2,peak, 6-MWD and tLIM during high-intensity constant-
load endurance protocols have been proven to be superior to
changes in resting lung and cardiac indices in the evaluation of
the effects of interventions. High-intensity constant-load
endurance protocols with measurement of tlim, symptoms
and pertinent CPET variables at a standardised time (isotime)
should be considered the test paradigm of choice, since they
are able to detect significant improvement in exercise
tolerance, which is often not the case for symptom-limited
incremental exercise testing.

In conclusion, the evidence base on the value of exercise testing
in functional evaluation, prognosis and discrimination of
interventional changes in pulmonary and cardiac diseases
has grown substantially in the past decade. However, as is
evident from the summary tables (4 and 5), in some instances,
the low power grades are reflective not so much of well-
powered statistical judgements as they are of weakness in the
density of the relevant evidence base. Such areas should be
seen as important priorities for future investigation.

TABLE 4 Indications for cardiopulmonary exercise testing in clinical practice

Indication Recommendation grade

Detection of exercise-induced bronchoconstriction A

Detection of exercise-induced arterial oxygen desaturation B

Functional evaluation of subjects with unexplained exertional dyspnoea and/or exercise intolerance and

normal resting lung and heart function

D

To recognise specific disease exercise response patterns that may help in the differential diagnosis of

ventilatory versus circulatory causes of exercise limitation

C

Functional and prognostic evaluation of patients with COPD B, C

Functional and prognostic evaluation of patients with ILD B, B

Functional and prognostic evaluation of patients with CF C, C

Functional and prognostic evaluation of patients with PPH B, B

Functional and prognostic evaluation of patients with CHF B, B

Evaluation of interventions

Maximal incremental test C

High-intensity constant work-rate ‘‘endurance’’ tests B

Prescription of exercise training B

With the use of this grading system, A is relatively rare and B is usually considered the best achievable. COPD: chronic obstructive pulmonary disease; ILD: interstitial lung

disease; CF: cystic fibrosis; PPH: primary pulmonary hypertension; CHF: chronic heart failure.

TABLE 5 Indications for 6-min and shuttle walking tests in clinical practice

Indication Recommendation grade

Diagnosis of exercise-induced arterial desaturation B

Functional evaluation of patients with COPD, ILD, PPH, and CHF B

Prognostic evaluation of patients with COPD, ILD, PPH and CHF B

Functional evaluation of patients with CF C

Prognostic evaluation of patients with COPD or CHF prior to surgery (LVRS, transplantation) C

Evaluation of the benefits of therapeutic interventions (oxygen supplementation, rehabilitation, surgery) B

With the use of this grading system, A is relatively rare and B is usually considered the best achievable. COPD: chronic obstructive pulmonary disease; ILD: interstitial lung

disease; PPH: primary pulmonary hypertension; CHF: chronic heart failure; CF: cystic fibrosis; LVRS: lung-volume reduction surgery.
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