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The data linking inherited factors to disease development suggest that “idiopathic pulmonary
fibrosis” is a misnomer http://ow.ly/LUrOw

This issue of the European Respiratory Journal contains a comprehensive review by KROPSKI et al. [1] that
supports a genetic basis for idiopathic pulmonary fibrosis (IPF) and encourages us to think differently
about this perplexing disease.

As the authors describe, the initial evidence that pulmonary fibrosis may have a genetic basis emerged
from case reports and case series that reported multiple cases of idiopathic interstitial pneumonias (IIPs)
clustering in families [2–6]. The epidemiology indicates that within families containing two or more cases
of IIP (familial interstitial pneumonia) the development of familial interstitial pneumonia is associated
with older age, male sex and ever having smoked cigarettes [6, 7]. The transmission pattern of inheritance
is consistent with an autosomal dominant pattern, and 45% of the families demonstrated several subtypes
of IIP within the same family, suggesting that IIP subtypes may be aetiologically related [6].

Initial family-based studies indicated that rare variants in surfactant protein genes (SFTPA2 and SFTPC)
[8–10] and telomerase related genes (hTERT and TERC) [11, 12] are associated with the development of
familial interstitial pneumonia [8, 10, 13–17]. Rare variants of the telomerase genes were also found to be
associated with the more common presentation of sporadic cases of IPF [11]. Through linkage and
association, we identified a promoter variant (rs35705950) in the Mucin 5B (MUC5B) gene that is strongly
associated with both familial and sporadic IPF [18]. The MUC5B promoter variant’s association with IPF
has been validated in seven subsequent independent cohorts [19–24], including our recent genome-wide
association study (odds ratio for T (minor) allele=4.51, 95% CI 3.91–5.21; p=7.21×10−95) [25]. The MUC5B
promoter variant rs35705950 is present in ∼50% of individuals with IPF and is recognised as the strongest
known risk factor (genetic and otherwise) for the development of familial and sporadic forms of IPF.
Subsequent genome-wide association studies have identified numerous additional loci associated with IPF,
including TERC (3q26), FAM13A (4p22), TERT (5p15), DSP (6p24), OBFC1 (10q24), ATP11A (13q34),
DPP9 (19p13), chromosomal regions 7p22 and 15q14-15, TOLLIP (11p15), and SPPL2C (17q21) [21, 25].

Although these rare and common variants enhance the risk of developing IPF, none of them have proven
causal. This suggests that the causal variants in these genes and loci have yet to be identified, or that the
development of IPF is complex involving multiple gene variants or gene–environment interactions, or that
false positive associations have been reported between these genetic variants and IPF. The hypothesis
raised by KROPSKI et al. [1], that rare variants are more penetrant than common variants and less
interactive with environmental risks is both logical and provocative. However, the relationship between
gene variants (rare or common) and the development of IPF is in need of further investigation, and will be
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informed substantially by whole genome sequencing in large numbers of families with familial interstitial
pneumonia or even larger numbers of patients with sporadic IPF. An emerging vision is that these
findings will lead to a greater understanding of disease aetiology and pathogenesis, and will result in novel
interventions that substantially alter the clinical course of IPF.

Although the genetic variants have contributed significantly to our collective understanding of the
aetiology of IPF, these findings have not yet clarified the pathogenesis of this disease. The gene variants
and loci associated with the development of IPF point to alterations in host defence, DNA repair and cell
senescence, and epithelial barrier function in the lung. More importantly, the genetic variants associated
with IPF may be useful in identifying the disease earlier when less lung tissue has been destroyed [26].
However, the value of intervention in early forms of IPF needs further consideration. There is probably a
more complicated relationship between inherited genetic variants and environmental factors that leads to
the phenotype we identify as IPF. Therefore, while genotyping rare and common variants is an important
part of ongoing translational and clinical research, the clinical implications of IPF risk genotypes need
further definition to be useful in the general population. But given the potential benefits of an early
diagnosis, it is reasonable to consider the role of genetic screening in first-degree relatives of patients with
IPF and within families with familial interstitial pneumonia.

As KROPSKI et al. [1] discuss in their review, the MUC5B promoter variant that confers greatest risk of disease
[18–25] and is associated with higher expression of MUC5B in the human lung [18] is also associated with
improved survival in IPF patients [18]. Other studies illustrate similar significant prognostic implications for
variants in the TOLLIP [21] and TLR3 [27] genes. The association between the MUC5B promoter variant
and less progressive restrictive lung function in patients with IPF further highlights the prognostic relevance
of these gene variants in IPF [20]. While these findings indicate that gene variants identify different subtypes
of IPF that are prognostically distinct, these findings also support the notion that gene variants may prove
important clinically and therapeutically. However, in the case of the MUC5B promoter variant there is
another intriguing possibility to consider. A microbiome study in patients with IPF [28] and a basic study in
genetically engineered mice [29] suggest that MUC5B may be an important component of lung host defence
and that more MUC5B in the airspace enhances host defence in the lung. Thus, although the MUC5B
promoter variant may enhance the risk of IPF, the associated enhanced expression of MUC5B may in fact
select for individuals with robust airway host defence. This is also supported by the broad range of minor
allele frequencies of rs35705950 in Africans (0%), Asians (0%), Hispanics (2.3%), African Americans (3.3%)
and Europeans (10%) (www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=35705950). The role of MUC5B in airway
host defence also raises the possibility that the rs35705950 allele was under positive selective pressure among
Europeans and retained at a relatively high frequency due to the selective advantage in airway immunity.

Further research into the clinical implications of genetic variants and IPF is particularly salient as new
therapeutic options become available for patients; if different genetic risk variants confer different prognoses
and perhaps different molecular mechanisms of disease, it would follow that therapeutic efficacy could vary as
well. Although two new therapies (pirfenidone and nintedanib) have recently been approved in the USA for
treatment of IPF, neither drug is curative and both drugs have modest effects on disease progression (125.3 mL
and 193 mL lower mean annual rate of change in forced vital capacity for nintedanib and pirfenidone,
respectively) [30, 31]. It remains possible that differential distribution of the TOLLIP, TLR3 or MUC5B
promoter variants in the intervention or placebo group accounted for the observed improvement with
nintedanib or pirfenidone, or even the negative results seen in trials of other agents that are now considered
ineffective in IPF [32–34]. To date, no studies have evaluated the effect of different risk variants and their
potential effects on lung transplantation outcomes. The history of IPF clinical research reveals examples of drug
trials with discordant findings when the trials were repeated [30, 35]. Such observations suggest the possibility
that in different patient populations, presumably with different genetic risk factors, different therapies might be
more effective. More importantly, clinical trials should control for the presence of prognosis-modifying genetic
variants, since progression-free survival is a frequent primary end-point in IPF clinical trials [36, 37]. As
evidence mounts that genetic risk influences disease progression, failure to control for such baseline patient
characteristics would be akin to performing clinical trials in progressive chronic lung diseases that do not
control for other traditionally recognised clinical factors like age, smoking status or baseline lung function.

For decades, IPF has remained an enigma, but the strength of the data linking inherited factors to
development of disease suggests that “idiopathic pulmonary fibrosis” is a misnomer. As KROPSKI et al. [1]
suggest, future studies will elucidate the molecular pathways leading to the phenotype of pulmonary fibrosis.
These insights will assist investigators in creating more appropriate classifications and nomenclature for a
decreasingly mysterious disease. More importantly, understanding the genetic causes of IPF will result in
earlier disease recognition, novel interventions aimed at secondary prevention, and personalised approaches
to halt the progression of established disease. As we begin to understand the genetic origins of this disease,
we need to reconsider the wisdom of the nomenclature we use to describe IPF.
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