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Abstract
Background Acute pulmonary exacerbations (AE) are episodes of clinical worsening in cystic fibrosis
(CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function
declines associated with acute inflammation during AE. Based on our previous observations that airway
protein short palate lung nasal epithelium clone 1 (SPLUNC1) is regulated by inflammatory signals, we
investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.
Methods We enrolled CF participants from two independent cohorts to measure AE markers of
inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.
Results SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg·mL–1), and significantly decreased
in CF participants without AE (n=30, 5.7 μg·mL–1; p=0.016). SPLUNC1 levels were 71.9% lower during
AE (n=14, 1.6 μg·mL–1; p=0.0034) regardless of age, sex, CF-causing mutation or microbiology findings.
Cytokines interleukin-1β and tumour necrosis factor-α were also increased in AE, whereas lung function
did not decrease consistently. Stable CF participants with lower SPLUNC1 levels were much more likely
to have an AE at 60 days (hazard ratio (HR)±SE 11.49±0.83; p=0.0033). Low-SPLUNC1 stable participants
remained at higher AE risk even 1 year after sputum collection (HR±SE 3.21±0.47; p=0.0125). SPLUNC1
was downregulated by inflammatory cytokines and proteases increased in sputum during AE.
Conclusion In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance
or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could
inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.

Background
Cystic fibrosis (CF) is a multisystem, autosomal recessive disease caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene [1–4]. CF acute pulmonary exacerbations (AE) are
generally reversible episodes of acute deterioration, associated with increased morbidity and worsening
quality of life [5–9]. AE are frequently triggered by respiratory viruses, but also by oropharyngeal flora
and bacterial respiratory pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus [10–12].
Increased lung inflammation during AE, manifested as higher immune cell counts and rising concentrations
of airway cytokines and proteases, contribute to tissue injury and disease progression [7, 13]. Increased AE
frequency decreases CF survivorship and accelerates lung function decline [14, 15]. Importantly, delays in
AE detection and treatment may have long-term effects on lung function recovery and response to
antibiotic treatment [16, 17]. These observations suggest that early AE detection could help improve
clinical outcomes in CF.
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Early or mild AE presentations can go undetected during routine visits [7, 18, 19], exacerbating an already
variable AE diagnostic approach among healthcare providers [20] and impacting treatment outcomes [21].
Biomarkers of airway inflammation or lung function, such as forced expiratory volume in 1 s (FEV1), are
routinely used to support AE diagnosis and management [18, 19]. However, FEV1 changes often occur as
a late consequence of AE, limiting its clinical use in early detection [22]. Inflammatory cytokines (e.g.
interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-α) have also been linked to AE, but there are
limited data on their ability to predict these events [23–25].

Our group and others previously demonstrated that airway concentrations of host defence protein short
palate lung nasal epithelium clone 1 (SPLUNC1) are closely regulated by inflammatory signals and
proteases [26–29]. SPLUNC1 is primarily expressed by nonciliated epithelial and mucus cells of the upper
and proximal lower respiratory tract [30–32]. SPLUNC1 is present at low levels in extrapulmonary tissues
and myeloid cells [30, 32]. SPLUNC1 has antimicrobial, immunomodulatory and ion transport properties
that are highly relevant to CF health, which may be disrupted at baseline and during AE [28, 33, 34].

SPLUNC1 decreases within hours of exposure to inflammation, irritants or pathogens [33], and it is
differentially regulated in lung disease [27, 28, 33, 35–39]. In CF, previous studies have shown low levels
in respiratory secretions [28], but increased bronchial SPLUNC1 staining in advanced disease [40].
Recently, genome-wide association studies showed that SPLUNC1 expression was higher in stable CF
patients compared to healthy controls, but lower in CF patients with more severe disease [41, 42]. In
asthma and active smokers, lower SPLUNC1 levels correlate with increased inflammation [35, 37, 38];
however, studies of its regulation in COPD have been inconclusive [27, 39]. Beyond airway disease,
SPLUNC1 dysregulation has been reported in idiopathic pulmonary fibrosis and respiratory malignancies
[33, 36, 43]. The variable relationship between SPLUNC1 regulation, inflammation and underlying lung
disease suggests that SPLUNC1 has a role as rheostat of respiratory health, whose function and regulation
are context-specific.

Based on the known downregulation of SPLUNC1 by pathogens and inflammatory signals, we
hypothesised that its sputum concentrations would decrease during AE, and that lower levels of SPLUNC1
would impair its host defence functions, leading to adverse clinical outcomes. Here, we show that
SPLUNC1 decreases sharply as inflammation increases in AE, and that in stable patients lower SPLUNC1
levels portend an increased AE risk. SPLUNC1 downregulation occurs shortly after exposure to cytokines
and proteases, suggesting that it could detect AE at early stages, reducing diagnostic uncertainty and
informing proactive interventions to decrease AE impact on CF health [44–46].

Materials and methods
Definition of CF exacerbation
AE was defined as the emergence of four out of 12 signs or symptoms, prompting changes in therapy and
initiation of antibiotics (modified from Fuchs’ criteria [18]). These criteria included change in sinus
congestion, sputum or haemoptysis; increased cough, dyspnoea, malaise, fatigue or lethargy; fever;
hyporexia or weight loss; change in chest physical exam; or FEV1 decrease >10% from a previous value [18].
Individuals not meeting AE criteria were characterised as “CF stable”.

Study design
This was a two-centre, prospective study of CF participants during periods of clinical stability and AE. All
patients received standard-of-care therapy and CFTR modulators when they became available. Our primary
objective was to define an association between AE and sputum levels of SPLUNC1. Each participant
provided a sputum sample and underwent spirometry within 24 h of sample collection. Participants were
followed at quarterly outpatient clinic visits, or sooner when indicated, for up to 1 year (supplementary
figure S1). Clinical information, sputum and spirometry data were collected at each visit.

Cohort characteristics
Discovery cohort
44 adults with confirmed CF diagnosis from the Yale Adult CF Program were recruited from 2014 to 2016
during 1) scheduled routine visits; 2) unscheduled visits in which they reported AE symptoms; and 3) on
the first day of admission to the hospital for AE treatment. We organised study participants in two groups:
1) stable CF participants (CF stable): no new respiratory symptoms, presenting to clinic for scheduled
follow-up and 2) AE participants (AE): diagnosed with AE (table 1). We also recruited 10 healthy controls
to undergo sputum induction according to published protocols [47]. The study was approved by the Yale
University institutional review board and informed consent was obtained from each participant.
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Validation cohort
35 adult and paediatric participants with confirmed CF, previously enrolled in a prospective study of
patients hospitalised for AE treatment at the University of Minnesota (UMN), were included [23]. All
patients received standard-of-care therapy and each participant provided sputum samples and performed
pulmonary function tests within 72 h of antibiotic initiation (table 2) [48].

Sputum collection and processing
CF participants expectorated sputum spontaneously for cultures and provided an additional study sample.
Induced sputum samples were obtained from healthy controls by induction as reported previously [47, 49].
Sputum was diluted, filtered, centrifuged and processed as reported previously [50].

SPLUNC1 and cytokine ELISA
A direct SPLUNC1 ELISA was developed in our laboratory to measure SPLUNC1 in sputum (details in
supplementary methods). Briefly, high-binding polystyrene ELISA plates (Corning, NY, USA; cat# 9018)
were coated with sputum supernatants or recombinant human SPLUNC1 protein (rhSPLUNC1) as
reference (Abnova, Taipei, Taiwan; cat# H00051297-P01). A polyclonal mouse anti-human SPLUNC1
IgG (MilliporeSigma, Burlington, MA, USA; cat# SAB1401687) was used as detection antibody and
horseradish peroxidase (HRP)-conjugated anti-mouse IgG (Invitrogen, Carlsbad, CA, USA; cat# G21040)
as secondary. Chromogenic tetramethylbenzidine substrate was applied (KPL, Gaithersburg, MD, USA;
cat# 5120-0047-50-76-00) and reactions were measured at optical densities of 450 and 550 nm. The assay
limits of detection were 1–20000 ng·mL–1. Mean±SD intra-assay variability was 5.18±1.28% and
inter-assay variability was 18.44±12.95%.

Custom-made multiplexed cytokine ELISA assays were used to measure cytokine levels in sputum.
Briefly, biotinylated capture antibodies for CXCL10, granulocyte colony-stimulating factor (G-CSF),
interferon (IFN)-α2a, IFN-γ, IL-1β, IL-13, IL-29, IL-6, IL-8, monocyte chemoattractant protein (MCP)-1,
macrophage inflammatory protein (MIP)-1α and TNF-α were combined with an assigned “linker” for each
cytokine. The linker–antibody mix was then coated onto U-plex plates and incubated overnight according
to manufacturer’s specifications (U-Plex Biomarker Kit; Mesoscale Diagnostics (MSD), Rockville, MD,
USA; cat# K15235N-1). The following day, recombinant human cytokines and sputum samples were

TABLE 1 Demographic characteristics of the Yale Adult CF Program cohort (discovery cohort)

HC CF stable CF AE

Participants 9 30 14
Age years 33.5±10.7 (27–45) 41.1±17.0 (20–79) 32.1±6.4 (23–43)
Sex
Female 1 (11.1) 17 (56.7) 8 (57.1)
Male 8 (88.9) 13 (43.3) 6 (42.9)

Mutation background
F508del/F508del NA 11 (36.7) 8 (57.1)
F508del/other NA 11 (36.7) 4 (28.6)
Other mutations NA 8 (26.7) 2 (14.3)

FEV1
FEV1 L NA 2.2±0.7 (0.57–3.3) 1.9±0.7 (0.55–2.98)
FEV1 % NA 67.5±24.3 (12–121) 56.1±24.3 (12–89)

BMI kg·m−2 NA 24.4±4.1 (17.6–35.8) 22.7±4 (17.6–35.8)
Exacerbations per year mean (range) NA 1.9 (0–10) 3.7 (1–10)
CF comorbidities
Pancreatic insufficiency NA 25 (83.3) 14 (100)
CF-related diabetes NA 11 (36.7) 9 (64.3)

Microbiology
Pseudomonas aeruginosa colonisation NA 12 (40) 9 (64.3)

CFTR modulators
Ivacaftor NA 2 (6.7) 0 (0)
Ivacaftor/lumacaftor NA 6 (20) 7 (50)

Data are presented as n, mean±SD (range) or n (%), unless otherwise stated. HC: healthy controls; CF stable:
cystic fibrosis participants without exacerbation; CF AE: CF participants with active pulmonary exacerbation;
FEV1: forced expiratory volume in 1 s; BMI: body mass index; CFTR: cystic fibrosis transmembrane conductance
regulator; NA: not applicable.
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loaded onto U-Plex plates. Finally, detection antibodies for each cytokine were applied and Read Buffer T
was added to each well to quantify the reaction. Plates were read on a Quickplex SQ 120 reader (MSD;
cat# AI0AA-0) using MSD Discovery Workbench software version 4.0.

Western blot
Western blots were performed as reported previously, using human neutrophil elastase (hELA2), mouse
monoclonal anti-hELA2 IgG (R&D Systems, Minneapolis, MN, USA; cat# MAB-91671-100) and mouse
polyclonal anti-human SPLUNC1 IgG [28]. HRP-conjugated anti-mouse IgG (Invitrogen; cat# G21040)
was used as secondary antibody. Membranes were developed using chemiluminescence and protein band
densitometry was determined using ImageJ software version 1.7 (https://imagej.nih.gov/ij/index.html).

Sputum neutrophil elastase activity and SPLUNC1 degradation assays
Neutrophil elastase (NE) activity was determined using the 7-amino-4-methylcoumarin assay (Peptides
International, Louisville, KY, USA; #MAA-3133), as described [28]. rhSPLUNC1 was incubated with
recombinant human NE (rhNE; R&D Systems; cat#9167-SE-020) or P. aeruginosa elastase (LasB, a gift
from Karen Agaronyan, Yale University School of Medicine, New Haven, CT, USA) at decreasing
concentrations for 3 and 8 h. SPLUNC1 concentrations were measured by ELISA. Starting NE
concentrations (1 μM) were selected based on previous sputum NE level measurements by our group [28].
There were no published data on airway levels of LasB during AE to inform dose selection. However, a
dose capable of inhibiting host defence peptide expression and inducing cytokine expression had been
reported previously (3.75 μM) [51]. Based on this, we chose a starting dose of 1 μM to define minimal
LasB doses capable of regulating SPLUNC1.

Regulation of epithelial cytokine expression
Mouse tracheal epithelial cells (mTECs) were isolated from C57BL/6 mice and cultured at air–liquid
interface as described previously [26]. mTECs were treated with recombinant murine IL-1β (Peprotech,
Rocky Hill, NJ, USA; cat# 211-11b) or TNF-α (Peprotech; cat# 315-01A) at 10 ng·mL–1 for 24 h.
NCI-H292 human airway epithelial cells were treated with recombinant human IL-1β (Gibco,
Gaithersburg, MD, USA; cat# PHC0811) or TNF-α (R&D; cat# 210-TA-005) at 10 ng·mL−1. Cellular

TABLE 2 Demographic characteristics of the University of Minnesota Cystic Fibrosis (CF) Center cohort
(validation cohort)

CF stable CF AE

Participants 11 24
Age years 27.1±7.7 (14–40) 30±10.5 (13–57)
Sex
Female 7 (63.6) 12 (50)
Male 4 (36.4) 12 (50)

Mutation background
F508del/F508del 6 (54.5) 14 (58.3)
F508del/other 5 (45.5) 9 (37.5)
Other mutations 1 (9.1) 0 (0)

FEV1
FEV1 L 2.4±0.6 (1.39–3.85) 1.7±0.6 (0.70–2.80)
FEV1 % 67.3±12.1 (45.5–86.5) 45.3±14.1 (26–74)

BMI kg·m−2 21.8±2.1 (18.1–24.6) 21.3±3.1 (13.1–25.8)
Exacerbations per year mean (range) 4.1 (1–12) 4.3 (1–10)
CF comorbidities
Pancreatic insufficiency 11 (100) 23 (95.8)
CF-related diabetes 6 (54.5) 9 (37.5)

Microbiology
Pseudomonas aeruginosa colonisation 5 (45.5) 9 (37.5)

CFTR modulators
Ivacaftor 0 (0) 0 (0)
Ivacaftor/lumacaftor 0 (0) 0 (0)

Data are presented as n, mean±SD (range) or n (%), unless otherwise stated. CF stable: CF participants without
exacerbation; CF AE: CF participants with active pulmonary exacerbation; FEV1: forced expiratory volume in 1 s;
BMI: body mass index; CFTR: cystic fibrosis transmembrane conductance regulator.
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mRNA was extracted for quantitative (q)PCR, and qPCR assays were performed to quantify SPLUNC1
transcriptional regulation as described previously [26].

Statistical analysis
Descriptive statistics were calculated for the entire participant population. Pearson or Spearman correlations
for variables that were not normally distributed, were calculated between SPLUNC1 and clinical
parameters. In order to select optimal thresholds to separate groups at higher AE risk, we developed
receiver-operator curves (ROC) based on the distribution of SPLUNC1, IL-1β, TNF-α, G-CSF, IL-6 and
IL-8 levels in the discovery cohort (supplementary figure S2). Using these thresholds, we applied statistical
modelling (Mantel–Haenszel estimator) to predict AE-free intervals. AE-free intervals were defined as the
time in days from sputum sampling in a stable patient to the time of the first AE after that visit. Finally, a
Cox proportional hazards model was conducted with clinical parameters as covariates. A backward
elimination strategy with a significance level to stay of 95% (α=0.05) was employed to achieve a
parsimonious model. All statistical analyses were conducted using SAS 9.4 with a level of significance of
95% (α=0.05).

Details are provided in the supplementary methods.

Results
SPLUNC1 is decreased in the sputum of stable CF participants
SPLUNC1 levels ranged from 4.41 to 22.24 μg·mL–1 in the sputum of healthy controls. In stable CF
participants, SPLUNC1 was significantly decreased, whereas total sputum protein was increased (figure 1a
and b). To further define the inflammatory profile of stable CF participants, we measured sputum
concentrations of cytokines previously reported to be increased in CF. Of these, IFN-α, IFN-γ, IL-1β, IL-8,
IL-13 and TNF-α were significantly increased in CF compared to healthy controls (figure 1c). There were
no differences in SPLUNC1 levels of stable participants according to severity of lung function impairment,
F508del genotype, use of CFTR modulators or microbiology findings (supplementary tables S1–S4,
supplementary figure S3a–d). These findings indicate that SPLUNC1 is abundant in sputum and decreased
in stable CF participants.

SPLUNC1 decreases further during AE
We measured SPLUNC1 levels in sputum from stable and AE participants to determine if SPLUNC1 is a
marker of AE. SPLUNC1 decreased sharply during AE in the discovery cohort (71.9% decrease) and in
the validation cohort (38.6% decrease) (figure 2a). In contrast, FEV1 did not decrease in the discovery
cohort AE group, but was significantly lower in the validation cohort (figure 2b).

Mean SPLUNC1 levels of AE participants treated with oral antibiotics (AEO) and intravenous antibiotics
(AEIV) in the UMN cohort were lower than stable CF levels. However, there was no difference in
SPLUNC1 levels between AEO and AEIV (supplementary figure S4). The lack of difference between
these treatment groups suggests that acute drops in SPLUNC1 occur during an AE regardless of its
severity.

Next, we sought to define SPLUNC1 fluctuations during AE within the same individuals, relative to their
stable-state reference value (individual-specific fluctuations). We compared SPLUNC1 and FEV1 (%) in
paired samples from the same participants, collected during stable and AE periods. SPLUNC1 decreased
during AE in the majority of paired samples from both the Yale and UMN cohorts (figure 3a). In contrast,
FEV1 decreased during AE in the majority of UMN samples, but not in those form the Yale cohort (figure
3b). These findings indicate that while SPLUNC1 is consistently decreased during AE, FEV1 changes
during AE vary across cohorts.

Low SPLUNC1 levels predict AE risk in stable CF participants
To determine if SPLUNC1 is a predictor of AE risk, we first performed a Mantel–Haenszel survival
estimator analysis for AE-free time. We separated the cohorts into high-/low-SPLUNC1 groups based on a
concentration threshold defined by ROC analysis comparing AE and stable patients (supplementary
methods, supplementary figure S2). In stable CF participants, the SPLUNC1-low group had a median
AE-free time of 43.5 days, compared to 150 days in the SPLUNC1-high group; this relationship was
preserved in a subgroup analysis of patients with FEV1 >40% predicted (supplementary figure S5). This
suggests that higher SPLUNC1 levels are associated with longer AE-free intervals independently of
stable-state FEV1.
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Next, we performed Cox-proportional hazards modelling to assess the likelihood of AE while adjusting for
demographics, CFTR genotype, CF-related comorbidities, microbiology and lung function. In the
short-term (60 days), participants in the SPLUNC1-low group had a significantly increased risk of AE
(hazard ratio (HR) 11.49, p=0.003; figure 4a), which persisted upon long-term follow-up at 1 year (HR
3.21, p=0.013; figure 4b).

In order to compare SPLUNC1 to previously reported biomarkers as predictors of AE, we defined ROC
thresholds and AE-free time for G-CSF, IL-1β, IL-6, IL-8 and TNF-α (supplementary figure S2). In a
similar multivariate proportional hazards model, cytokine high/low groups based on these markers did not
show an increased hazard ratio of AE at 60 days, and only high IL-1β and TNF-α were associated with an
increased AE risk at 1 year of follow-up (HR 3.90 and 3.46, respectively, p<0.05; supplementary figure S6).
These findings suggest that SPLUNC1 is a better predictor of AE risk in the short and long term than
previously reported sputum AE markers.
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FIGURE 1 Short palate lung nasal epithelium clone 1 (SPLUNC1) is decreased in the sputum of stable cystic fibrosis (CF) patients. a) SPLUNC1
levels (ELISA) in sputum samples from the Yale cohort of adult CF patients without respiratory symptoms (CF stable) and healthy controls (HC).
b) Total protein in sputum (bicinchoninic acid assay) from the same patients. c) Inflammatory cytokine levels (ELISA) in sputum from the same
patients. Additional cytokines tested without significant difference: CXCL10, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-λ,
interuleukin (IL)-6, IL-13, monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)1α. CF samples were obtained by
voluntary expectoration during clinical assessment; HC samples were obtained by sputum induction with nebulised normal saline solution. Data
are presented as mean (+), median and range. TNF: tumour necrosis factor. *: p<0.05; **: p<0.01; ****: p<0.0001, Mann–Whitney test with Bonferroni
correction.
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Human and bacterial elastases found in CF sputum degrade SPLUNC1
Our group and others have shown that NE degrades SPLUNC1, and that NE inhibitor sivelestat only
partially prevents SPLUNC1 degradation by CF sputum [27, 28]. In order to understand the role of NE
and bacterial elastase in decreasing SPLUNC1 during AE, we incubated rhSPLUNC1 with recombinant
human neutrophil elastase (NE) or LasB at increasing concentrations for 3 and 8 h. Both elastases induced
a concentration-dependent decrease in full-length SPLUNC1 (figure 5a and b). Next, we quantified NE
concentrations in healthy control and CF sputum during stable and AE periods. NE was increased overall
in CF, but it did not increase significantly from stable levels during AE (figure 5c). Finally, to define
individual-specific NE and SPLUNC1 changes, we performed Western blots of healthy control and CF
sputum, probing for NE, followed by re-probing for SPLUNC1. Although NE was increased in CF relative
to healthy controls, NE levels were not different between stable and AE states (figure 5d).

To determine if NE activity, rather than concentration, increased during AE we measured NE-specific
fluorescent cleavage products. When incubated with NE, CF sputum had much higher NE activity than
healthy control sputum; however, there was no difference between stable and AE participants (figure 5e).

Sputum cytokines IL-1β and TNF-α are increased during AE
To further define the AE inflammatory profile of CF participants, we measured concentrations of 13
cytokines in stable and AE samples. Only IL-1β and TNF-α were significantly increased during AE (figure
6a). In addition, we sought to define a relationship between SPLUNC1 and cytokine levels in sputum
during stable and AE states using Pearson’s correlation. In stable and AE groups from both cohorts, IL-1β
levels inversely correlated with SPLUNC1 (supplementary figure S7), while CXCL10, G-CSF, IFN-γ,
IL-6, MCP1, MIP-1α and TNF-α did not consistently correlate with SPLUNC1 across cohorts (not
shown).

In order to determine whether increased IL-1β and TNF-α contributed to decreased SPLUNC1 during AE,
we treated mTEC and a human airway epithelial cell line with these cytokines and measured SPLUNC1
mRNA expression. At concentrations encountered in AE sputum, both IL-1β and TNF-α decreased
SPLUNC1 expression by airway epithelial cells (figure 6b). Together with our observations from NE and
LasB experiments, these findings suggest that during AE, SPLUNC1 is decreased through protein
degradation and cytokine-driven transcriptional downregulation.
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Discussion
AEs contribute to increased morbidity in CF and treatment delays are associated with poor FEV1 recovery
and impaired treatment responses [5–9, 15–17, 52, 53]. Yet, few biomarkers are clinically available to
guide early AE interventions in order to minimise hospitalisations and improve quality of life [44–46].
Here, we describe a novel role for SPLUNC1 as an AE biomarker and predictor that could support clinical
decision-making to improve AE outcomes.

The key finding of our study is that among CF participants, SPLUNC1 levels were considerably lower
during AE compared to stable state. We propose that the mechanism for SPLUNC1 decreases in CF is
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FIGURE 3 Individual-specific short palate lung nasal epithelium clone 1 (SPLUNC1) and forced expiratory
volume in 1 s (FEV1) decreases during acute cystic fibrosis (CF) exacerbations (AE). Samples from two clinical
cohorts including a) adult (Yale University, n=8) and b) mixed adult/paediatric CF patients (University of
Minnesota, n=11). i) Paired SPLUNC1 levels in sputum samples from the same individual with and without AE
(ELISA); ii) paired FEV1 measurements from the same individual with and without AE obtained by spirometry
during clinical assessment. Each vertical line and number represent a single patient who provided one stable
and one AE sample. When values were the same, these were represented by two overlapping diamonds along
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multifactorial, with contributions from protease degradation and gene expression downregulation by
inflammatory cytokines. Prospectively, stable patients with low SPLUNC1 had an increased likelihood of
AE at 60 days and 1 year. These findings suggest that SPLUNC1 levels could inform the diagnosis and
clinical management of AE in the short and long term.

By the time symptoms develop or FEV1 declines, airway inflammation and damage may already be
underway [14, 15]. In the face of a suspected AE with incomplete clinical criteria and normal spirometry,
a low SPLUNC1 level would support a decision to increase airway clearance, adjust monitoring or initiate
pharmacological interventions when appropriate. In asymptomatic stable patients, low SPLUNC1 levels
could also prompt immediate or long-term changes in clinical management.

Although symptom and spirometry monitoring at home increase AE detection, they do not prevent FEV1

decline, possibly because of the delayed nature of FEV1 changes in response to airway inflammation [54].
The application of clinical biomarkers is even more challenging in children, where FEV1 and cytokine
abnormalities are inconsistently detected until adolescence, despite early evidence of structural lung disease
[44, 55–57]. SPLUNC1 measurements at home could detect subtle inflammatory changes that complement
symptom and spirometry monitoring.

Previous studies examined the correlation between sputum biomarkers, infection, inflammation, and lung
function decline in CF [25, 58–67]. While some defined novel AE biomarkers [25, 68–72], to our
knowledge, ours is the first study to compare a broad panel of markers in AE and stable state that includes
adults and children.

Daily changes in inflammatory signals or pathogen exposures may cause small fluctuations; however,
SPLUNC1 levels drop sharply during AE. We previously showed that lipopolysaccharide (LPS) and IFN-γ
have tonic suppressive effects on SPLUNC1 at baseline [26]. However, high-dose LPS and IFN-γ
exposures decrease epithelial SPLUNC1 expression drastically, indicating a dose-dependent response.
SPLUNC1’s tight regulation suggests that it is an ideal biomarker to detect early and subtle changes in
lung homeostasis [26].

SPLUNC1 has host protective functions relevant to CF, including regulation of airway surface liquid,
antimicrobial properties and immunomodulatory effects [73–79]. Therefore, SPLUNC1 decreases in CF
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may not only be a marker, but also a contributor to pathogenesis during AE and disease progression.
Decreased SPLUNC1 in CF may impair mucociliary clearance and facilitate bacterial colonisation, leading
to tissue injury and exacerbated inflammation. In fact, some SPLUNC1-deficient animal models have
shown increased susceptibility to infectious and non-infectious inflammation [80, 81]. In our study, we
observed increased IL-1β and TNF-α during AE, but only IL-1β inversely correlated with SPLUNC1. This
correlation may reflect the transcriptional effects of higher relative concentrations of IL-1β during AE
when compared to TNF-α (figure 6a). Furthermore, others have shown that IL-1β may have a more potent
neutrophil recruitment effect than TNF-α [82]. Thus, the increased concentrations of IL-1β may enhance
neutrophil recruitment that in turn increases SPLUNC1 degradation, strengthening the inverse correlation
between SPLUNC1 and IL-1β. Our data showing increased NE levels and activity, although not different
between AE and stable state, suggest that SPLUNC1 cleavage at functional sites by NE (and other
proteases during AE) may disrupt its host defence functions, worsening inflammation and accelerating lung
disease [34, 83].

Our study has some limitations. First, our study has a small sample size and predicts AE risk based on
cross-sectional data. However, our findings show it was adequately powered to demonstrate differences in
key observations, confirmed on a validation cohort. In future, we would favour serial SPLUNC1
measurements to establish stable-state baselines that reflect day-to-day fluctuations. Second, there is no
distinct SPLUNC1 level that separates healthy controls from CF, or stable- from AE-state in all
participants. The overlap of SPLUNC1 levels among some healthy controls and CF patients may be in part
explained by changes in inflammation and environmental exposures between sputum samplings. However,
our study highlights the value of individual biomarker variability in characterising disease states. Third, we
used i.v. or oral therapy as surrogates for disease severity. We appreciate that choice of therapy route is

at 37°C. Data are presented as mean (+), median and range. NS: nonsignificant; OD: optic density; AE: acute CF
exacerbation, symptoms of AE and ongoing antibiotic therapy; CF stable: no symptoms of AE, no antibiotic
treatment; m: marker; ST: stable CF; +Ctl: recombinant protein positive control. *: p<0.05; **: p<0.01; #: p<0.005,
Mann–Whitney test.
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based on many factors, including access to care, AE complications and severity of FEV1 decline [84]. We
decided to present these data to show that SPLUNC1 can be used as a marker in AE of any severity and
regardless of factors driving therapeutic decisions. Finally, our cohorts had a higher prevalence of
advanced lung disease and CFTR genotypes linked to severe disease. We addressed this in our multivariate
models by using a backwards elimination strategy to confirm that the predictive ability of SPLUNC1 was
not affected by CFTR genotype. Larger prospective studies are needed to replicate our findings in
subcohorts that reflect specific CFTR genotypes, comorbidities and the impact of novel CFTR modulator
combinations.

In the age of highly effective CFTR modulator therapy, we look forward to rising life expectancy and
quality of life [4]. We hope that measurements of noninvasive, airway-relevant biomarkers such as
SPLUNC1 will become a resource to guide acute management of respiratory complications and inform our
partnership with CF patients for the betterment of their long-term health.
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