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ABSTRACT:  The second part of this review on eosinophils focuses on biological
cell functions and surveys the various deleterious mechanisms involved in the
eosinophil-dominated inflammatory reaction.  It discusses the possible pathogenic
role of eosinophils in several eosinophil-related diseases, such as parasitic infections,
interstitial lung disorders and bronchial diseases, graft rejection, vasculitic granu-
lomatous disorders, pleural effusion, and bronchogenic tumours. 

The final section of the article highlights the possible recent pharmacological
and future therapeutic approaches in modifying eosinophil recruitment and func-
tion.
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This paper is published as a follow-on to "Pulmonary
immune cells in health and disease: the eosinophil leu-
cocyte (Part I)"*  (Eur Respir J, 1994; 7: 519–543).

Biological cell functions

The eosinophil mediates its effector functions through
various distinct cellular mechanisms, namely nonoxida-
tive, oxidative, and humoral mechanisms (fig. 7).

Nonoxidative mechanisms

As mentioned previously, the three basic proteins as
well as eosinophil peroxidase (EPO) have toxic proper-
ties independent of molecular oxygen species.  For
instance, major basic protein (MBP) [323], eosinophil
cationic protein (ECP) [324] and EPO in the presence
of hydrogen superoxide and a halide [99] kill helminth-
ic parasites in vitro. In addition, these proteins are toxic
for tumour cells and/or mammalian cells [325], includ-
ing human pulmonary parenchyma and interstitial
matrix [326, 327], cultured human lung epithelial cells
[328], and guinea-pig respiratory epithelium [252, 253,
329].  Furthermore, it has been demonstrated that MBP
damages human bronchial epithelium, which consists of
desquamation and destruction of ciliated cells [329].
Finally, release of their granule proteins by platelet-

activating factor (PAF)-activated intact eosinophils has
been shown to imitate the characteristic pathological
findings of airway epithelium in asthma [330].

In addition to their cytotoxic action, eosinophil cat-
ionic proteins at certain subtoxic concentrations also
stimulate other inflammatory cells.  For instance, MBP
and ECP have been shown to degranulate platelets [305],
induce histamine release from mast cells and basophils
[240, 245, 331], as well as superoxide anion generation
and lysosomal enzyme release by human neutrophils
[264].

Finally, eosinophil proteins may affect airway muscle
function and hyperresponsiveness.  Recent reports inves-
tigating the effects of direct intratracheal instillation of
purified eosinophil granule proteins on pulmonary func-
tion and airway responsiveness in primates [281, 332]
have shown that MBP induces a dose-related increase in
airway responsiveness to inhaled methacholine.  In the
same model, both MBP and EPO caused a transient bron-
choconstriction immediately after instillation, that resolved
within 1 h.  Interestingly, other eosinophil granular pro-
teins failed to effect airway responsiveness or pulmonary
function.

Mode of action. The mode of action of these basic pro-
teins is not yet fully established.  Structurally, they con-
sist of: 1) charged domains made up predominantly of
basic amino acids, such as lysine and arginine [333–335];
and 2) hydrophobic amino acid chain segments [336].
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Thus, their physicochemical properties resemble that of
hymenoptera venom toxins such as melittin or masto-
poran [174, 337, 338], the ninth component of comple-
ment [339], and perforin 1 from natural killer and cytotoxic
T-lymphocytes [340] as well as bacterial streptolysin-
O and staphylococcal α-toxin [341].

These proteins have in common a high affinity for
plasma membranes, to which they bind in two distinct
stages:  firstly the proteins approach the cell through the
formation of electrostatic bonds between their positively
charged residues and the invariably negatively charged
external membrane surface due to its content of acidic
phospholipids, glycolipids and glycoproteins [342, 343].
This interaction is then followed by insertion of the
lipophilic molecule fragment into the membrane lipid
bilayer.  The driving force for the hydrophobic interac-
tion may be the entropic advantage gained from desolv-
ation of both the hydrophobic core of the phospholipid
bilayer and the apolar surface of the amphiphilic protein
[337, 344–346].  These protein-membrane interactions
induce a number of disturbances in the target cell mem-
brane including clustering of negatively charged com-
ponents and aggregation of adjacent membranes [343].
These processes, in turn, may destabilize membranes,
induce fusion of adjacent bilayers, activate phospho-
lipase A2 [131, 169, 347], and form voltage-insensitive
transmembrane ion channels [237, 340].  Once enough
protein has breached the bilayer, a cascade of events,
such as osmotic imbalance and swelling [338], loss of
cellular contents, or influx of Ca2+, is likely to take
place, which eventually leads to cell death and lysis
[174, 337).  This mechanism of toxicity was first pro-
posed in 1987 [337], and was recently confirmed using
fluorescence and circular dichroism spectroscopy [348].
Additional efforts to further elucidate the mechanism
are currently under way.

Oxidative mechanisms

Eosinophils may also exert their effector function by
two oxygen-dependent mechanisms [111, 112, 330].

One involves the generation of toxic oxygen radicals
(1O2 and .O2), and the other, the production of hypo-
bromous acid (HOBr), hydriodic acid (HIO3), or hydro-
bromic acid (HBrO3).  In addition, newly formed
superoxide anions spontaneously dismutates to H2O2.
Both 1O2 and H2O2 alone are likely to exert toxic effects
[111].  In addition, in the presence of H2O2 EPO oxi-
dizes the halides, iodide (I-) or bromide (Br-), to their
corresponding hypohalous acids, which, in turn, are able
to oxidize a wide range of target molecules in cells and
micro-organisms.  The EPO/H2O2/halide system is toxic
to bacteria, including Escherichia coli, Staphylococcus
aureus, Legionella pneumophila, and Mycobacterium
leprae, as well  as to fungi, the schistosomula of Schistosoma
mansoni, the newborn larvae of Trichinella spiralis,
Trypanosoma cruzi trypomastigotes, Toxoplasma gondii,
tumour cells and mast cells (for review see [2, 349, 350].

The eosinophil is exceptionally rich in peroxidase,
and the enzyme is released both by soluble stimuli [73,
110, 131, 135, 169], and by adhesion to larger opson-
ized targets [2, 30, 33, 56, 159, 169, 208, 349, 350].
EPO is a highly basic protein that binds avidly to neg-
atively charged surfaces with retention of peroxidase
activity.  In the presence of H2O2 and halide, target cells
with surface bound EPO are rapidly destroyed, as has
been demonstrated with S. aureus, L. pneumophila, T.
gondii, T. cruzi, schistosomula of S. mansoni, and tu-
mour cells [2, 99, 349, 350].  In addition, the toxic effect
of intact neutrophils or macrophages is considerably
increased when EPO is bound to the target cell, utiliz-
ing the H2O2 generated by the phagocyte more efficiently
[97, 98, 349].  Finally, EPO can associate with mast cell
granules to form a highly bactericidal and tumouri-
cidal complex in the presence of H2O2 and a halide
[232, 235, 236, 242].

Lipid mediator-mediated mechanisms

Eosinophils contribute to inflammation through the de
novo generation and release of lipid mediators, such
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Fig. 7.  –  Nonoxidative, oxidative and lipid mediator-associated effector functions of eosinophil leucocytes on bronchial and interstitial tissue.
MBP: major basic protein; ECP: eosinophil cationic protein; LTC4: leukotriene C4; TxA2: thromboxane A2; PAF: platelet-activating factor.
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as platelet-activating factor (PAF) [117, 124–126],
leukotriene C4 (LTC4) [115, 117, 120], prostaglandin E
(PGE) [118–122], prostaglandin F1 (PGF1) and throm-
boxane A2 (TxA2) [119–121, 123].  Using combined ca-
pillary gas chromatography/mass spectrometry, two
more prostanoids, prostaglandin D2 (PGD2) and prosta-
glandin F2α (PGF2α), have been shown to be generated
by human and guinea-pig eosinophils [64, 73, 123], which
may induce certain pathophysiological effects in vivo.
Eosinophil-derived PAF, LTC4 or TxA2, PGD2, and PGF2α,
for instance, may contribute to tissue inflammation,
bronchoconstriction or bronchial hyperreactivity in late-
phase asthmatic reactions where eosinophils are charac-
teristically found.  PGE has been shown to down-regulate
eosinophil function and may serve as a negative feed-
back signal for eosinophils [119].

Eosinophil-dominated inflammatory reaction

As outlined above, considerable circumstantial evi-
dence implicates the eosinophil as a major effector cell
in various diseases of the lung.  Eosinophils can release
preformed and de novo generated mediators, the actions
of which may invoke many of the pathological fea-
tures, not only of asthma but also of acute and chronic
interstitial lung disorders.  The underlying immune mech-
anism could be initiated by exogenous antigens, fig. 8
1 , inducing antigen presenting cells to release inter-

leukins 4, 5 and 6 (IL-4, IL-5, IL-6) and interferon-γ
(IFN-γ), 2 , thereby regulating proliferation and differ-
entiation of T- and B-lymphocytes  3 .  Plasma cells may
produce immunoglobulin-E (IgE), which binds to tissue
dwelling mast cells and infiltrating basophils, 4 . T-
lymphocytes may further differentiate into the Th2 sub-
set, which produces a defined spectrum of proinflam-
matory cytokines, 5 .

After being released from the bone marrow into
the circulation, A , under the influence of cytokines
(granulocyte-macrophage colony-stimulating factor
(GM-CSF), IL-3 and IL-5) possibly derived from anti-
gen-stimulated T-lymphocytes, mast cells, platelets, or
interleukin-1 (IL-1)- and tumour necrosis factor (TNF)-
stimulated endothelium, 6 , eosinophils may undergo
priming and augment the membrane expression of adhe-
sion molecules such as CD 11b, B .  At the same time,
tissue mast cells, previously sensitized by plasma cell-
derived IgE, bind specific antigen, triggering the rel-
ease of bioactive mediators into the bronchial mucosa
and lumen, and thereby inducing the early allergic
response.  The concerted action of cytokines and PAF
secreted by mast cells and other inflammatory cells may
then induce eosinophil adhesion to endothelial cells, C ,
diapedesis or penetration through the blood vessel
wall, D , and the migration of the eosinophil into the
affected tissue, E .  After arrival at the inflammatory
focus, the eosinophil may at first be immobilized and
hyporeactive, due to cell desensitization mediated by
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chemotactic factors such as PAF.  The continued expo-
sure of the cell to locally secreted cytokines, however,
may enhance survival and prime the cell, enabling the
eosinophil to regain its proinflammatory properties, na-
mely the release of granule proteins, cytokines, lipid
mediators and reactive oxygen species [138].  Depending
on the respective antigen, the infiltrated tissue and its
histological properties and physiological function, eosin-
ophil-derived products may either cause destruction of
airway epithelium (bronchial asthma),  F , interstitial  de-
struction and oedema (eosinophilic pneumonia, parasitic
infestation), G and H , or granulomatous tissue destruc-
tion in certain vasculitic disorders (Churg-Strauss syn-
drome),  I .  Toxic products secreted by the eosinophil may
even contribute to the host defence mechanism against
bronchogenic carcinoma, K .  In addition, eosinophil-
derived basic proteins and lipid mediators, together with
cytokines, may enhance the function of surrounding tis-
sue dwelling and infiltrating cells, L , thereby further
intensifying the local inflammatory tissue reaction.

Role in human disease

Eosinophils have been implicated in a wide spectrum
of human disease (table 7), ranging from parasitic infes-
tations and allergic reactions to vasculitic and granulo-
matous diseases [2, 326, 351–368].  The potential role
of the eosinophil in helminthic infections, interstitial
lung disorders, and bronchial asthma, including both
their beneficial or protective and detrimental role, will
be outlined below.

Parasitic infestations

The association between helminthic infestation and
peripheral blood eosinophilia dates back to the begin-
ning of this century, and frequently involves the lung
(tropical filarial eosinophilia) [359].  Four main findings
have emerged over the past two decades.  Firstly, anti-
eosinophil serum reduces both the number of peripher-
al blood eosinophils and increases susceptibility to
parasites [325].  Secondly, eosinophils are directly invol-
ved in the killing of helminths [323, 360].  Thirdly,
eosinophil granule proteins and oxygen metabolites are
cytotoxic for parasites [361, 362].  Finally, eosinophils
accumulate and degranulate around parasites in vivo [363,
364].  These data appear to support a role for the eosinophil
in host defence against parasites.

More recently, however, studies investigating the role
of cytokines [365, 366] on the immunity to helminths in
mice seem to contradict the above mentioned findings.
Administration of anti-IL-5 and anti-IL-4 antibodies
markedly reduced blood and tissue eosinophilia as well
as serum IgE levels, but failed to diminish immunity
to the parasite.  In contrast to these findings, treatment
with antibodies to IFN-γ caused partial depletion of
immunity against the schistosomula in the lungs [367].
Although mice may employ different immune mecha-
nisms for parasite resistance, the apparent discrepancy
with previous work clearly warrants further clarification.

The mechanism whereby eosinophils destroy para-
sites can be divided into recognition, attachment and
killing phases.  Recognition is facilitated by chemotac-
tic factors produced by other participating inflammatory
cells and by parasite-derived factors.  In addition,
immunoglobulin G (IgG) antibodies [368] and comple-
ment proteins [369], facilitate the attachment of the
eosinophil to the parasite. Adhering eosinophils flatten
and release granule proteins [370, 371], and oxygen rad-
icals [99, 108, 372], onto the surface of the parasite
eventually leading to its destruction.

Interstitial lung disorders

Although eosinophils are rarely found in the normal
human lower respiratory tract, accumulation of eosin-
ophils in the parenchyma is found in the course of var-
ious inflammatory diseases [373, 374].  Besides the
well-known eosinophil-associated histiocytosis-X [375],
and chronic eosinophilic pneumonia [376], other diseases,
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Table 7.  –  List of eosinophil-associated respiratory dis-
eases

Infectious diseases
Tissue-invasive helminths
Filariasis
Schistosomiasis
Strongyloides
Trichinosis
Toxocariasis
Ascariasis
Echinococcosis/cysticercosis

Other infections
Acute coccidioidomycosis
Afebrile tuberculosis
Cat scratch disease
Chlamydial pneumonia of infancy

Interstitial and other pulmonary diseases
Transient pulmonary eosinophilic infiltrates (Löffler)
Chronic eosinophilic pneumonia
Hypersensitivity pneumonitis
Allergic bronchopulmonary aspergillosis
Topical eosinophilia
Idiopathic pulmonary fibrosis
Sarcoidosis
Histiocytosis X
Eosinophilic pleural effusions

Vasculitic granulomatous diseases
Churg-Strauss syndrome
Temporal vasculitis
Wegener's granulomatosis
Polyarteriitis nodosa

Immunological diseases
Graft rejection
Intrinsic bronchial asthma?

Allergic disorders
Allergic rhinitis
Extrinsic bronchial asthma
Drug reactions

Neoplastic and myeloproliferative diseases
Lymphomas, especially T-cell type and Hodgkin's disease
Bronchogenic carcinoma
Hypereosinophilic syndrome

From [2] after modification.



such as idiopathic pulmonary fibrosis, sarcoidosis,
hypersensitivity pneumonitis, and chronic interstitial
disease associated with the collagen-vascular disorders
can, on occasion, also be characterized by an accumu-
lation of significant numbers of eosinophils in alveolar
structures and the interstitium [355, 356].  The reasons
for this inconsistent observation of eosinophil involve-
ment in these diseases may be related to disease vari-
ability, as well as early treatment with corticosteroids
in these patients.

Although neutrophils are considered to be the major
effector cell in idiopathic pulmonary fibrosis (IPF),
there is evidence that eosinophils may at least contribute
to the underlying inflammatory process in ongoing dis-
ease.  Eosinophils are normally found in the bron-
choalveolar lavage (BAL) fluid, and in approximately
one third of the patients, the eosinophil number exceeds
that of neutrophils [377].  In addition, eosinophils have
been associated with progression of the disease [377,
378].  The levels of ECP in BAL fluid from patients
with IPF are significantly increased compared to heal-
thy controls, and its concentration correlates with a re-
duction in diffusion capacity of the lung [379].  Similarly,
increased ECP levels in BAL fluid are also associated
with severity of lung damage in patients suffering from
adult respiratory distress syndrome (ARDS) [380].

Although the cause of eosinophil accumulation in
some of these disorders is unknown, increasing evidence
suggests that the eosinophil can function as an effector
cell capable of mediating direct interstitial tissue de-
struction.  A role for eosinophils in mediating injury to
the lung parenchyma in ARDS is supported by experi-
ments demonstrating that the cells are cytotoxic to sev-
eral types of lung parenchyma cells in vitro, and that
they can degrade matrix components of the human lung
parenchyma [326, 328].  In general, two different
mechanisms may be involved.  Firstly, the eosinophil
collagenase has been shown to specifically cleave hu-
man lung collagens type I and III [326, 381].  Secondly,
eosinophils damage human lung parenchyma cells
through their granular basic proteins and the generation
of reactive oxygen radicals.  For instance, eosinophils
are cytotoxic for lung fibroblasts, mesothelial cells,
and epithelial cells [325, 326, 328, 330, 382].  Eosinophil-
mediated cytotoxicity could be partially inhibited by
anti-oxidants [253, 330], suggesting a role for both oxi-
dative and nonoxidative effector mechanisms.

Eosinophilic pneumonia

The eosinophilic pneumonias comprise a broad spec-
trum of disorders clinically characterized by systemic
illness, severe constitutional symptoms, and mainly peri-
pheral pulmonary infiltrates on the chest X-ray film
[355, 376, 383].  The common denominator of these syn-
dromes is an infiltrative eosinophilia [384], accom-
panied by an increased number of eosinophils in blood
and BAL [148, 154, 265, 385, 386].  Treatment with
corticosteroids often leads to rapid recovery, but pro-
longed therapy is frequently required to avoid recur-
rence [383, 387, 388].

Although the pathogenesis of eosinophilic pneumonia
is not yet understood, increasing evidence suggests that
the eosinophil may represent a major effector cell in
the underlying pathomechanisms of the disease.  This
conclusion is based on several studies of lung tissue and
BAL fluid from patients with eosinophilic pneumonia,
showing increased concentration of ECP in the BAL
fluid [265], localization of eosinophil granule MBP
in areas of eosinophilic microabscesses [327, 388], nu-
merous lysed eosinophils [265], and free granules
within the pulmonary microvasculature, as well as de-
posits of MBP in parenchymal lesions [389–392].  In
addition, bronchoalveolar eosinophils obtained from
these patients show extensive degranulation [154,
265], are predominantly hypodense [37, 148, 154, 265],
and express several activation markers, including inter-
cellular adhesion molecule-1 (ICAM-1), CD 11b, as
well as the major hisocompatibility class II antigen,
HLA-DR [37, 140], suggesting a profound activation of
pulmonary eosinophils in this disease.

The above observations are complemented by in vitro
studies, which show that eosinophil-derived granular pro-
teins can directly injure pulmonary endothelial cells,
increase the transvascular flux of proteins across endo-
thelial monolayers, and cause lung oedema in isolated
perfused rat lungs [393, 394].  Hence, eosinophils may
be directly responsible for the tissue injury in eosino-
philic pneumonia, including the variable infiltrates of
the lung.  In addition, since the class II protein HLA-
DR mediates the interaction of accessory cells with
CD4+ lymphocytes, it may be conceivable that eosino-
phils function as an antigen-presenting cell for an, as
yet unknown, antigen in eosinophilic pneumonia.

Vasculitic granulomatous diseases

Deposits of eosinophil granule products have been
demonstrated in a number of vasculitic granulomatous
disorders, such as Churg-Strauss syndrome [395], necro-
tizing vasculitic lesions in polyarteriitis nodosa and
Wegener's disease [396], systemic vasculitis of unknown
origin [397], and in temporal arteriitis [398].  Deposits
of eosinophil-derived proteins in inflamed vessels are
preferentially found in areas with necrotic lesions and in
thrombi.  In contrast, eosinophils or their products can
not be found in atherosclerotic arteries, suggesting that
involvement of eosinophils in vasculitic granulomatous
disease is specific.

Graft rejection

Experimental lung allograft in the rat causes eosinophil
infiltration, accounting for up to 20% of the cellular infil-
trate within 4 days after implantation [399].  In man,
several reports have demonstrated that eosinophils may
also participate in graft rejection, although it is not yet
clear whether the eosinophils actively participate in the
underlying immune response or whether they simply rep-
resent a nonspecific marker for lymphocyte activation.
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However, eosinophilia occurring after renal transplanta-
tion was shown to be an adverse prognostic factor for
graft survival [400–402].  In addition, an increase in the
number of blood and graft eosinophils was reported to
be a sensitive and specific indicator for acute rejection
[403].

Eosinophilic pleural effusion

Eosinophils are often observed in pleural effusion asso-
ciated with pneumothorax, asbestosis, pulmonary in-
farction, sarcoidosis and collagen vascular disease [404,
405].  In addition, eosinophils occur in pleural effusion
of unknown cause.  Although the pathogenic significance
of pleural eosinophils is not yet clear,  their presence
appear to reduce the likelihood of an underlying malig-
nant disease or pulmonary tuberculosis [404–408].  Recent
reports have shown that eosinophilic pleural effusions
contain significant concentrations of IL-5, GM-CSF and
interleukin-3 (IL-3) and that these factors contribute to
eosinophil proliferation and survival [225]. In addition,
administration of interleukin-2 (IL-2) into the pleural
cavity has been shown to cause eosinophil accumu-
lation indirectly via the release of these cytokines by
lymphocytes [225].

Bronchial asthma

Bronchial asthma has been defined as a lung disease
with reversible airway obstruction, airway hyperrespon-
siveness and airway inflammation [409]. The disease
occurs as an intrinsic and an extrinsic, atopy-related
form.  Although different immunological pathomech-
anisms may be operative [410], both types have in com-
mon an eosinophil-dominated bronchial inflammatory
reaction of the bronchial tissue [308, 411–417].  Eosino-
phils or their granular products are preferentially found
along the lining of bronchioles close to the areas of dam-
aged epithelium and mucous plugs [80, 308, 351, 352,
418, 419].  An increase in the number of bronchial epithe-
lial eosinophils during exacerbation of naturally occur-
ring asthma is associated with an increase in both airway
hyperresponsiveness and asthma symptoms [308].

Immunohistological analysis of bronchial tissue has
provided additional evidence that eosinophils are active-
ly involved in the inflammatory tissue reaction in asth-
matic airways [308, 352, 418].  Histological sections of
lungs from patients with asthma show MBP deposited
along the lining of bronchioles close to the areas of
damaged epithelium and mucous plugs [351, 352].
Immunofluorescence studies with two mouse mono-
clonal antibodies EG1 (specific for ECP) and EG2
(specific for a common epitope of secreted ECP and
eosinophil-derived neurotoxin (EDN)) have demon-
strated that degranulated eosinophils were found beneath
the basement membrane and among epithelial cells,
even in patients with mild asthma, where degranulation
was related to epithelial damage [352].

Besides their occurrence in bronchial tissue, eosino-
phils may also be present in peripheral blood obtained

from asthmatic subjects [352, 420–423].  In addition, an
inverse correlation between blood and eosinophil count
and the degree of bronchial hyperresponsiveness expressed
in methacholine provocation concentration producing a
20% fall in forced expiratory volume in one second (PC20)
[420, 424, 425] has been reported.  A correlation was
also found between the number of blood eosinophils and
the forced expiratory volume in one second (FEV1) in
subjects with intrinsic asthma [425], and in atopic asth-
matics with the late allergic response [426].  Moreover,
a study on the effect of immunotherapy on bronchial
responsiveness in pollen-allergic patients with a history
of rhinoconjunctivitis and wheezing suggests that there
is a correlation between serum ECP concentration and
bronchial hyperresponsiveness [354].  In untreated patients,
the level of ECP increased significantly during the pollen
season, but this did not occur in patients receiving
immunotherapy.

Large numbers of eosinophils or eosinophil-derived
proteins are found in sputum of symptomatic asthma-
tics, particularly in aspirin-induced asthma [253, 329,
427–429].  Compact clusters of columnar cells contain-
ing numerous eosinophils, eosinophil granules as well
as Creola bodies may also be seen [416].  In addition,
it has been demonstrated that the concentration of
MBP in sputum is consistently raised and the detection
of this protein is specific for asthma [329, 428].  The
amount of Creola bodies and EPO in sputa were also
elevated in asthma, although these proteins are not spe-
cific for this disease [253].

Increased numbers of eosinophils are also found in
BAL fluid from asthmatics [310, 352, 417, 430–435].
In stable, nonsymptomatic asthmatics or in cortico-
steroid treated subjects, the proportion of eosinophils,
however, is not excessively increased, and may even be
normal [433, 436].  In addition, eosinophil count may
differ depending on the underlying form of asthma.  For
instance, comparison of different asthmatic types have
demonstrated that the blood eosinophil count may be
higher in atopic than in nonatopic asthmatics, and even
greater in patients with aspirin-sensitive asthma [437].

Eosinophil-derived basic proteins have been shown to
cause direct damage to both guinea-pig and human
respiratory epithelium [351].  At low doses, MBP caus-
es exfoliation of epithelial cells and impairment of cil-
iary beating.  At higher concentrations, MBP detaches
ciliated and brush cells and destroys individual cells
exposing the basal cell layer.  At an ultrastructural level,
MBP disrupts the plasma membrane, liberating the
cellular contents [253, 325, 351, 416, 438].  Examin-
ation of asthmatic bronchial tissue sections by immuno-
fluorescence technology shows deposition of MBP at
the sites of epithelial damage [351].  ECP also caused a
dose-related damage to guinea-pig tracheal epithelium,
as assessed by inverted microscopy.  In addition, EPO
at low concentrations, either alone or in the presence
of hydrogen peroxide and a halide, caused ciliostasis,
bleb formation, and exfoliation of epithelial cells [253].
Finally, PAF-activated eosinophils also led to ciliostasis
and disruption of respiratory epithelium in vitro [330].
Taken together, these observations strongly suggest that
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the eosinophil represents an effector cell in asthma
capable of damaging respiratory epithelium.

Airway challenge in allergic subjects has been used as
an experimental model to study physiological responses
and development of airway inflammation.  With the
more widespread use of fibreoptic bronchoscopy as an
investigative tool in asthma, an increasing number of
studies have shown that local endobronchial allergen
provocation with subsequent performance of BAL rep-
resents a new approach in studying allergen-driven
airway inflammation which is representative of nat-
urally occurring asthma (for review see [436]).  These
studies have convincingly demonstrated a consistent
increase in eosinophil numbers recovered by BAL in the
absence of provocation.  In addition, when mild asth-
matics were challenged with antigen in a subsegment
bronchus, a multifold increase in total cell recovery
compared to a control sham-challenged segment was
observed after 19–96 h [43, 138, 153, 432, 436].  This
rise in cell numbers was due mainly to an increase in
numbers of eosinophils.  There was a less pronounced
but significant rise in lymphocytes and basophils as well
as mast cells, whereas the numbers of neutrophils,
macrophages and epithelial cells did not differ signifi-
cantly between the antigen and control segment [36,
37, 43, 138, 153, 163, 432, 436].  In contrast, no change
in either the differential count or the absolute cell
count was observed in the antigen or control sites 10
min after challenge.  The results clearly demonstrate
that antigen challenge of airways of even mild asthma-
tic subjects induces an inflammatory cell recruitment
that is numerically predominated by eosinophils. and to
a lesser extent by lymphocytes, mast cells and baso-
phils.

Bronchogenic tumours

The association of eosinophilia and malignancies was
first described in 1893 in a 31 year old woman with a
tumour of the neck [439].  Since then, a number of re-
ports have been published describing either increased
eosinophil counts or infiltration in lymphoreticular
malignancies, lymphocytic leukaemias, intestinal tu-
mours and carcinoma of the lung (for review see [2]).
However, expression of eosinophilia both in peripheral
blood and tumour tissue varies significantly, and only
a small proportion of patients with oral, gastric and
breast carcinomas show increased eosinophils within the
tumour tissue.  In contrast, in both carcinoma of the
cervix and colon [440], eosinophils were observed in
approximately one third of the cases.  Even more impor-
tant, a positive correlation was found between tumour
eosinophils and the survival rate [440].

In lung cancer, only a few studies have been published
to date.  In a study of 72 operable primary lung cancers,
59% [37] showed a prominent local infiltration of
eosinophils.  Follow-up studies indicated that eosinophil
tumour infiltration was associated with a good prog-
nosis, whilst the absence of eosinophils indicated a poor
outcome [441, 442].  In a recent prospective study on

720 consecutive patients, the number of eosinophils as
well as the level of serum ECP was raised not only in
patients with asthma, hypersensitivity pneumonitis,
and bronchiectases, but also in patients with carcinomas
of the lung [443].  Since ECP is a better indicator of
eosinophil involvement than eosinophil cellular counts,
these data strongly support eosinophil involvement in
bronchogenic tumours.  Whether ECP or other eosinophil-
derived proteins may prove to be a useful soluble tumour
marker warrants further investigation.

Although the significance of eosinophils in broncho-
genic tumours is far from understood, eosinophils may
be part of the immunological anti-tumour response of
the host. As mentioned above, eosinophil-derived pro-
teins have been shown to kill tumour cells in vitro [2,
350].  In addition, tumour patients which responded
to radiation therapy with a blood eosinophilia [444,
445] showed double the median survival of those who
did not [445]. Also, the incidence of naturally-occurring
mammary tumours in mice was reduced when they
developed an eosinophilia following infection with
Trichinella spiralis [446].  Furthermore, development
of sarcoma was completely suppressed in rats infected
with Nippostrongulus brasiliensis, five days before tu-
mour inoculation [447].  When tumour cells secreting
IL-4 or IL-2 were introduced into mice, the tumours sho-
wed an eosinophilic infiltrate and were rejected faster
than in animals with nonsecreting tumours [288].  In
addition, the studies demonstrate that the cytokine-
associated tumour cytotoxicity was dependent on eosin-
ophils.  Thus, it may be concluded that eosinophils may
contribute to the host antitumour response.  Further
studies investigating the role of eosinophils in lung can-
cer are currently under way.

Therapeutic perspectives

Several drugs commonly used for asthma treatment
have been shown to affect eosinophil functions (table
8).  However, the increased knowledge of eosinophil
cellular biology and effector function in the context of
an inflammatory lymphocyte-guided reaction during
recent years has prepared the ground for the develop-
ment and rational use of several other classes of drugs.
These include modern antihistamines with anti-inflam-
matory action, immune response modifiers,  anticytokine
and antimediator antibodies, as well as synthetase inhibi-
tors, antioxidants and protein neutralizers.  The final
section of this paper aims to review the currently avail-
able anti-eosinophil drugs, with a special emphasis on
substances still in early clinical development.

Corticosteroids. Corticosteroids are the most effective
anti-inflammatory drugs so far known for treating many
eosinophil-related disorders.  Corticosteroids are likely
to have a multifactorial therapeutic effect, resulting
from the suppression of the regulatory mechanisms of
the immune response, migratory action, as well as the
distal effector functions of eosinophils.  For instance,
corticosteroids reduce the number of sputum [448], and
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peripheral blood eosinophils [152, 410, 449–451], pre-
sumably through a decreased release from the bone mar-
row [452], a reduction in eosinophil survival [453, 454],
and inhibition of eosinophil tissue infiltration probably
by inhibiting both eosinophil chemotaxis [455, 456] and
adherence to endothelium [47, 457–459].  Corticost-
eroids also diminish antibody-dependent eosinophil
cytotoxicity [460].  In asthmatics, inhaled steroids reduce
the concentration of ECP in serum and sputum [414,
424, 461, 462], as well as in BAL fluid [463].  In ad-
dition, normal eosinophil counts were found in the BAL
fluid of patients undergoing a steroid therapy [463],
which may be due, in part, to inhibition of GM-CSF
production by bronchial epithelial cells [292, 293].  Ste-
roids also diminish the number of circulating hypodense
eosinophils [152, 464], and inhibit the generation of
superoxide anions by eosinophils when administered to
normal subjects [465].

In addition, steroids have been shown to inhibit eosin-
ophil activation in vitro. Several studies have demon-
strated that corticosteroids prevented the expression of
Fc receptors [466], degranulation [467], chemotaxis and
adherence [456, 457], the formation of lyso-PAF,
leukotrienes, and 15-hydroxyeicosatetraenoic acid (15-
HETE) [468], and the release of EPO and superoxide
anions [469].

Eosinophils express glucosteroid receptors [470], and
in one report their absence was correlated with clinical
glucosteroid resistance in the hypereosinophilic synd-
rome [471].

β-agonists. β2-agonists are the most effective bron-
chodilators in current use, and act predominantly by re-
laxing airway smooth muscle, but also by inhibiting
mast cell degranulation [472].  In passively sensitized
guinea pigs, inhalation of β2-stimulants at low con-
centrations (0.004–0.3%) inhibited the increase in the
number of eosinophils in the BAL fluid after allergen
challenge [473].  In humans, treatment with β2-agonists
and theophylline decreases the serum ECP level [461].
Furthermore, β2-agonists reduced the release of both
EPO and superoxide anions from zymosan stimulated
human eosinophils in vitro [474].  The effect of these
drugs are mediated through activation of β2-receptors
which, in turn, are coupled to adenylate cyclase [475,
476].  It is interesting that the magnitude of inhibition
was associated with a short preincubation time indi-
cating that desensitization of β-receptors may occur ra-
pidly after exposure to the agonist.

Xanthines and selective phosphodiesterase inhibitors.
Xanthines, such as theophylline, are bronchodilating
drugs in the management of asthma.  Although it has
been suggested that theophylline has, in addition, some
anti-inflammatory action [477], its effects on eosino-
phil function is yet to be established.  Purified guinea-
pig and human eosinophils respond to preincubation
with theophylline in a biphasic manner: at therapeutic
concentrations theophylline enhanced the response of
the cells stimulated with opsonized zymosan.  Only high
concentrations (10-3 M) were inhibitory [475].  This

observation may explain the lack of effect of theophyl-
line on bronchial hyperreactivity [478].

Previous studies have established that guinea-pig
peritoneal eosinophils contain at least one type IV phos-
phodiesterase (PDE) isoenzyme [479, 480].  In an ani-
mal model, treatment with the type III/IV selective
PDE inhibitor, zardaverine [481], significantly reduced
the influx of eosinophils in the peritoneum following
serum-protein challenge [482].  In addition, eosinophils
purified from the treated animals showed a significant
reduction of actin polymerization and diminished che-
motactic migration in response to both PAF and C5a ex
vivo. The clinical significance of selective PDE inhib-
itors awaits to be elucidated.

Disodium cromoglycate. Disodium cromoglycate
(DSCG) has been widely used in the treatment of bronchial
asthma, and appears to be particularly useful for atopic
asthmatic subjects.  DSCG treatment significantly re-
duces the number of eosinophils in bronchial mucus and
BAL fluid [417].  In addition, it has been shown to
inhibit the tissue accumulation of eosinophils during
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Table 8.  –  Effects of various drugs on cellular functions
of the eosinophil leucocyte

Eosinophil function      Anti-eosinophil drug

Tissue infiltration Corticosteroids
Ketotifen
DSCG
PDE type IV inhibitors
Cetirizine
PAF receptor antagonists
Anti-IL-5 receptor antagonists

Chemotaxis Corticosteroids
Nedocromil
PDE type IV inhibitors?
Cetirizine
PAF receptor antagonists

Surface receptor expression Corticosteroids
Nedocromil
Cetirizine

Adhesion Corticosteroids
Cetirizine

Hypodensity Corticosteroids
Nedocromil
Azelastine

Survival Corticosteroids
Granular protein secretion Corticosteroids

Nedocromil
DSCG
Ketotifen
β2-agonists

Oxygen radical production Corticosteroids
DSCG
β2-agonists

Lipid mediator release Corticosteroids
Nedocromil

Cytotoxicity Corticosteroids
Nedocromil
Cetirizine

DSCG: disodium cromoglycate; PDE: phosphodiesterase; PAF:
platelet-activating factor; IL-5: interleukin-5.



the late response to allergen in IgE-sensitized rabbits
[483], and to PAF in guinea-pig [484] and human skin
[485], as well as eosinophil activation in vitro [486,
487].

Nedocromil sodium. Nedocromil sodium is a pyra-
noquinoline dicarboxyline acid which has been demon-
strated to have some beneficial effects in various models
of asthma, including human airway response to hyper-
osmolar challenge [488], PAF-mediated bronchocon-
striction [489], early and late responses to allergen
challenge in asthmatics [490, 491], and eosinophil re-
cruitment in humans [491].  Besides its inhibitory action
on mast cells, neutrophils, monocytes and platelets
[492–496], nedocromil sodium has been shown to block
various eosinophil functions, including secretion of
granule proteins [497], eosinophil chemotaxis [498,
499], surface antigen expression [500], leukotriene C4

secretion in response to various agents [499, 501] as
well as density change, damage to airway epithelium
[502, 503] and other cytotoxic mechanisms [498, 500].
Hence, these inhibitory effects of nedocromil on eosino-
phil function suggest that it may be effective in eosino-
phil-related disease, such as asthma.

Ketotifen. Ketotifen is a benzocycloheptathiophene
with anti-allergic properties as demonstrated in a variety
of in vivo and in vitro models [504].  Besides its abili-
ty to block the action of histamine, the release of medi-
ators from mast cells, calcium uptake and to prevent
and reverse β-adrenergic tachyphylactic reactions, keto-
tifen has been shown to inhibit eosinophil degranu-
lation [505], and the recruitment of eosinophils into
the airways that results from exposure to PAF [506].

Cetirizine. Cetirizine is a second generation, non-
sedating highly selective H1 antihistamine, which has
been shown to be effective in the prophylaxis and treat-
ment of asthma [507–510].  In addition to its anti-
H1-receptor properties, cetirizine possesses inhibitory
properties for basophils [511], and eosinophils [512–
514].  For instance, cetirizine has been shown to inhib-
it chemotaxis of eosinophils in vivo [512, 513, 515],   and
in vitro [514], reduces both PAF-induced receptor com-
plement expression and cytotoxicity [516], prevents
IL-5-induced ICAM-1 expression in vitro [517], and
selectively blocks adhesion of eosinophil to endothelial
cells [518] possibly via the very late activation anti-
gen-4 (VLA-4)/vascular cell adhesion molecule-1
(VCAM-1) interaction.

Azelastine. Azelastine is a phthalazinone derivative
with anti-allergic and anti-asthmatic properties [504].
Besides its potent antihistamine action, it also has
inhibitory effects on oxygen radicals released by neu-
trophils, macrophages, and eosinophils [519].  How-
ever, for the other new antihistamines, the mechanism
of action for azelastin is unknown.

PAF-antagonists. Over the past 10 yrs, a number of
antagonists for PAF have been developed (for review see
[520]), such as WEB 2068, MK-287 and UK-74,505.

Their potent inhibitory effect on eosinophil function
has been shown in vitro [64, 72, 194] and in antigen-
induced airway responses in humans [521–525].  How-
ever, in some clinical trials, the effect of PAF receptor
antagonists given orally or by inhalation has been dis-
appointing [526–529].

The reasons for this discrepancy are currently not un-
derstood.  However, several explanations may be con-
sidered.  Firstly, it may prove difficult to effectively
block the effect of endogenously released PAF, since
PAF appears to be a mediator which to a large extent
remains associated with cells and has almost a "para-
crine" effect influencing only neighbouring cells.  It
may, therefore, interact with other cells at rather high
concentrations that may be difficult to antagonize with
currently available competitive antagonists.  Perhaps,
even more potent antagonists must be developed, or
drugs which specifically block the synthesis of PAF.
Alternatively, higher local concentrations may be ach-
ieved by inhalation of an antagonist.

Secondly, PAF comprises a family of multiple mole-
cular species, including both saturated and unsaturated
1-O-alkyl homologues, 1-O-acyl analogues, and acety-
lated phosphoglycerides having polar head groups other
than choline.  Different molecular species of PAF can
be produced by an inflammatory cell.  The biological
significance of the molecular heterogeneity is not yet
clear.  However, given the variable biological activity
of each member of the PAF family [530], the inflam-
matory cell may be able to alter the predominant "type"
of PAF, thereby determining the degree of inflam-
matory activity.  Furthermore, PAF may use not only
different molecular species with different biological
activities, but also different receptor subtypes with various
affinity states and different signalling mechanisms to
differentially regulate pathophysiological processes,
for instance in bronchial tissue in asthma [531].  Hence,
this heterogeneity may, in part, explain the somewhat
conflicting results regarding the effectiveness of PAF
receptor antagonists, and suggest that the action of cur-
rently available antagonists may not be sufficient to
block total PAF activity.  More potent PAF receptor
antagonists with a different selectivity profile and both
intracellular and extracellular action may prove more
beneficial [532].

Leukotriene synthesis inhibitors and receptor antago-
nists. Sulphidopeptide leukotrienes (LT) had already
been identified in the late 1930s by Kellewy and
Trethewie, and have since been suggested as playing a
role in allergic airway disease by mediating smooth
muscle contraction, bronchial secretion of mucus, and
airway mucosal oedema by increasing postcapillary
venopermeability [533, 534].  In addition, a recent
study suggests that inhalation of LTE4, the most stable
of the sulphidopeptide leukotrienes, elicits eosinophil
recruitment in human airways [535].  Sulphidopeptide
leukotrienes, LTC4, LTD4, and LTE4, provoke airway
obstruction via binding to the LTD4 receptor, since sep-
arate LTC4 or LTE4 receptors have not been identified
[536].  Eosinophils are a major source for LTC4 and
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may contribute to LT-elicited airway response during
the late reaction [63, 115–117]. 

The development of the leukotriene D receptor antag-
onists has confirmed the relative contribution of these
specific cellular products in allergic disease, such as
asthma.  Indeed, clinical and experimental studies em-
ploying several LTD4 receptor antagonists suggest a
beneficial effect of these substances in allergic asthma
[537–541], exercise-induced asthma [542–545], aspirin-
induced asthma [546], PAF or antigen-mediated bron-
choconstriction [547–549], as well as Ascaris-induced
late-phase bronchoconstriction, airway responsiveness,
microvascular leakage, and leucocyte infiltration [550,
551].  However, since binding sites for sulphidopeptide
leukotrienes on eosinophils have not been found, a
direct effect of leukotriene D receptor antagonists on
eosinophils is unlikely.

Thromboxane synthetase inhibitors and antagonists.  TxA2,
PGD2 and PGF2α are short-lived but highly potent
smooth muscle contractors in man, and have been de-
monstrated to be released by human and guinea-pig
eosinophils [63, 119].  The eicosanoids mediate their
biological action via binding to the thromboxane recep-
tors, which are widely distributed in airway smooth
muscle.  Hence, conceptually thromboxane receptor
antagonists, such as GR32191 or ICI 92605 may be
more effective than thromboxane synthetase inhibitors
which do not prevent synthesis of PGD2 or PGF2α.  While
their action on eosinophils and other immune cells re-
mains to be elucidated, preliminary clinical trials have
been promising [552].

Cytokine antagonists and cyclosporin. Since cyto-
kines may play a crucial role in mediating eosinophil
tissue infiltration, the administration of cytokine antag-
onists may be useful in eosinophil-associated disease.
This view is supported by animal experiments showing
that monoclonal anti-IL-5 antibodies suppress blood
eosinophilia and infiltration of eosinophils into the lungs
of mice parasitized with Nippostrongylus brasiliensis
[367, 553, 554].  In view of the capacity of GM-CSF to
render eosinophils resistant to the effect of corticoster-
oids [555], the concurrent administration of steroids
with a cytokine receptor blocker may augment their
effectiveness.

A similar approach to modifying the elaboration of
eosinophilopoietic cytokines may be achieved by other
drugs, such as cyclosporin A.  Cyclosporin A has been
successfully used as an immunosuppressant in organ
transplantation.  It is thought to inhibit proliferation of
T-lymphocytes and cytokine release [556], and may
also affect immune effector cells, such as mast cells,
basophils or eosinophils via interaction with cycloph-
ylin [557]; and unpublished results.  In an experimental
study using T-cell clones from a patient with hyper-
eosinophilic syndrome (HES) as a model target system,
it could be demonstrated that cyclosporin A induced a
clinical remission by abolishing the generation of these
cytokines [558].  In a clinical randomized cross-over
study on 33 patients with severe chronic corticosteroid-

dependent asthma [559], administration of cyclosporin
A improved the lung function and reduced the number
of exacerbations in the asthmatics.  Although its mode
of action remains to be elucidated in asthma, it is like-
ly that cyclosporin A modifies the lymphocyte driven
eosinophil response.

Antioxidants and protein neutralizers. Oxygen rad-
icals play an important role in eosinophil-mediated
epithelium toxicity [253, 330].  Hence, detoxification
of toxic oxygen metabolites may be a useful approach
to prevent inflammatory tissue damage.  N-acetyl-L-
cysteine is widely used as a mucolytic but it may also
act as an antioxidant, as a reducing agent and as a
chelating agent.  Thus, it may neutralize toxic oxygen
radicals and other oxidative mediators of inflammation
released by eosinophils and other immune cells.  How-
ever, whilst it lessens the toxic effects of paracetamol
(acetaminophen) overdosage, its efficiency in inflam-
matory conditions is uncertain [560–562], and awaits
further investigation.

As has been mentioned above, heparin and related
anionic molecules released from mast cells and baso-
phils, neutralizes the toxic properties of MBP on vari-
ous cells [252–254].  Hence, administration of the
highly anionic heparin as an aerosol may reduce the
toxic effects of eosinophil-derived basic proteins on air-
way epithelium.  In an animal model, heparin reduced
the epithelial damage of guinea-pig caused by MBP [252,
253].  In addition, heparin has been shown to inhibit
eosinophil infiltration into lung tissue of laboratory ani-
mals [563], which may be related to its effects on lym-
phocyte activation [564] endothelial permeability [565],
and negative charge [566], or via neutralization of eosinophil
chemotactic factors itself [567].  Finally, heparin may
modulate the release of proinflammatory mediators to
prevent exercise-induced asthma [568].

A similar, yet more experimental, approach to neu-
tralize basic proteins employing other acidic substances
has only recently been suggested.  For instance, acidic
polyamino acid has been shown to inhibit the toxicity
of MBP and ECP to cultured K562 cells and guinea-pig
tracheal epithelium [332, 333].  In addition, aerosol in-
halation of an acidic polyglutamic acid in primates sig-
nificantly inhibited the MBP-induced increase in airway
resistance and hyperresponsiveness as assessed by me-
thacholine.

Perspective

The last 10 yrs have seen a tremendous increase in
our understanding of the pathophysiological role of
eosinophils, and the pace of research still seems to be
accelerating.  So far, several aspects of the immuno-
biology of the eosinophil have been outlined.  These
include cellular functions and survival, signal trans-
duction, the role of cytokines on eosinophil differen-
tiation, cytotoxic capacity, the molecular biology and
mode of action of the eosinophil granule proteins, as
well as their recruitment from the circulation into the
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tissues.  However, numerous important questions remain
to be addressed.  Whilst most of the current knowledge
on eosinophils has been obtained from allergic and asth-
matic patients, little is known of their role in other
diseases, such as eosinophilic pneumonia, vasculitic/
granulomatous disorders and even malignancies.  It may
be possible to fortify the host antitumour immune res-
ponse by raising eosinophil cytotoxicity.  In addition, the
molecular biology of the eosinophil as a source of cyto-
kines or other proteins has to be further elucidated. The
question of whether cellular hypodensity may be res-
tricted to the eosinophil, or whether it may reflect a
general reaction of inflammatory cells following acti-
vation deserves further attention.  Work on the nature of
the immune reaction leading to tissue eosinophilia, i.e.
the association with IgE-related allergic reactions as
opposed to nonallergic disorders, represents another im-
portant perspective.  In this context, understanding of
the pathogenesis of intrinsic asthma may provide
further insight into this question.

IL-5 may be an important mediator responsible for
eosinophil tissue infiltration.  However, other factors
may also be necessary and future work will have to de-
lineate the differential effects of various eosinogenic
mediators.  In addition, the possible benefits of the appli-
cation of anti-adhesion molecules or anti-cytokines, as
well as other antagonists, in vivo will further help to
define their respective significance for eosinophil acti-
vation.  Finally, a number of drugs with potential anti-
eosinophil properties have been developed.  Studies are
under way to characterize their effects on eosinophils
in the context of eosinophil-dominated diseases.  There
is still a quest for drugs capable of selectively modi-
fying eosinophil function.
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