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Beyond the dogma: novel b2-adrenoceptor

signalling in the airways
M.A. Giembycz* and R. Newton#

ABSTRACT: b2-Adrenoceptor agonists evoke rapid bronchodilatation and are the mainstay of the

treatment of asthma symptoms worldwide. The mechanism of action of this class of compounds is

believed to involve the stimulation of adenylyl cyclase and subsequent activation of the cyclic

adenosine monosphosphate (cAMP)/cAMP-dependent protein kinase cascade.

This classical model of b2-adrenoceptor-mediated signal transduction is deeply entrenched, but

there is compelling evidence that agonism of b2-adrenoceptors can lead to the activation of

multiple effector pathways, which now compels researchers in academia and the pharmaceutical

industry alike to think beyond the traditional dogma. Therefore, the regulation by b2-adrenoceptor

agonists of responses, including airways smooth muscle tone and the secretory capacity of the

epithelium and pro-inflammatory/immune cells, may be highly complex, involving both cAMP-

dependent and -independent mechanisms that, in many cases, may act in concert.

In this article, the current status of b2-adrenoceptor-mediated signalling in the airways is

reviewed in the context of understanding mechanisms that may underlie both the beneficial and

detrimental effects of these drugs in asthma symptom management.

KEYWORDS: Airways smooth muscle, asthma, b2-adrenoceptor agonists, cyclic adenosine

monosphosphate signalling

S
hort-acting b2-adrenoceptor agonists are
the most effective and safest bronchodila-
tors currently available, and are the drugs

of choice for the rapid alleviation of bronchocon-
striction that occurs in asthma. This class of
compounds relaxes airways smooth muscle
(ASM) irrespective of the constrictor stimulus
and are well tolerated by most patient groups
[1–3]. The introduction, in the early 1990s, of
long-acting b2-adrenoceptor agonists and their
widespread inclusion into primary healthcare
regimens (e.g. 2003 British Thoracic Society
guidelines [4]), as well as the clinical develop-
ment of other cyclic adenosine monosphosphate
(cAMP)-elevating compounds, such as phospho-
diesterase (PDE) 4 inhibitors, has led to the

realisation that cAMP elevation in relevant cells
may also provide additional benefits, including
possible anti-inflammatory activity [5]. Further-
more, the widely reported beneficial effects in
asthma of long-acting b2-adrenoceptor agonists
in combination with inhaled glucocorticoids has
led to renewed interest in the molecular basis
underlying this enhanced therapeutic effect [6].
Despite improved asthma treatment options,
adverse effects are not reported infrequently
and increased numbers of asthma-related deaths
associated with high-level use of certain agonists
are well documented [7]. Although these adverse
clinical events may be due to receptor or even
whole pathway desensitisation [8], studies since
the late 1990s suggest that promiscuous coupling
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of the b2-adrenoceptor to effectors other than the traditional
cAMP/cAMP-dependent protein kinase (PK)A cascade may
also be involved [9]. More fundamentally, the molecular
mechanisms by which b2-adrenoceptor agonists cause ASM
to relax are still not completely defined. It is likely that areas of
deficiency in the understanding of b2-adrenoceptor function
and action will provide explanations for many of these
observations and continued research may lead to improved
therapeutic approaches. In the present article, b2-adrenoceptor
signalling in the airways is reviewed and related, where
possible, to the clinical effects of selective agonists.

THE DOGMA AND BEYOND
It is well established that the b2-adrenoceptor can couple via
the heterotrimeric stimulatory G-protein (Gs) to adenylyl
cyclase (AC), thereby enhancing the rate of cAMP biosynthesis.
One primary consequence of this signalling is the activation of
PKA, which, according to conventional dogma, mediates the
ability of cAMP to cause smooth muscles to relax by a variety
of complementary mechanisms (fig. 1a) [2, 3, 10–14]. How-
ever, incremental advances in the understanding of b2-
adrenoceptor-mediated signal transduction since the
mid-1990s have shown that this deceptively simple signalling
cascade is, in fact, highly complex, involving multiple variants
of AC, PKA and PDE, as well as scaffolds, such as PKA
anchoring proteins (AKAPs), which bind PKA and play a role
in targeting the kinase to specific intracellular locations [15–
19]. In addition, data obtained from studies using inhibitors of
AC and PKA suggest the existence of cAMP- and PKA-
independent mechanisms of ASM relaxation evoked by b2-
adrenoceptor agonists (fig. 1b–e) [20–22]. Likewise, there are

reports of PKA-independent effects of cAMP-elevating agents
in respect of repression of cytokine release and apoptotic
responses [23, 24]. Therefore, it is highly likely that further
nonclassical, yet biologically significant, mechanisms of b2-
adrenoceptor signalling remain to be elucidated [19, 21, 25–28].

ADRENOCEPTORS IN THE LUNG
Adrenoceptors are members of a large family of related G-
protein-coupled receptors (GPCRs) and are activated by the
endogenous hormones adrenalin and noradrenalin. There are
two main groups of adrenoceptor and these have been
classified as a- and b-subtypes, which are encoded by at least
nine distinct genes (a1A, a1B, a1D, a2A/D, a2B,,a2C, b1, b2 and b3)
[29]. a1-Adrenoceptors can couple via the G-protein, Gq, to
phospholipase C (PLC), ultimately leading to an increase in the
cytosolic free Ca2+ concentration ([Ca2+]c) [30]. Accordingly, a1-
adrenoceptor agonists promote Ca2+-dependent responses,
typically smooth muscle contraction. Conversely, agonism of
a2-adrenoceptors can lead to an inhibitory G-protein (Gi)-
mediated inhibition of AC that may act to prevent smooth
muscle relaxation [30]. Despite evidence for a-adrenoceptors in
the lung, neither receptor subtype has a clear role in regulating
human ASM tone [31]. This is in contrast to all b-adrenoceptor
subtypes, which can activate AC through Gs and could, in
theory, promote smooth muscle relaxation [30].

It is noteworthy that the b3-adrenoceptor can also couple to Gi

and, therefore, inhibit AC. This finding may have significance
for epithelial cell function, where functional b3-adrenoceptor
has been described, but not for ASM, which seemingly lacks
expression of this subtype [32–34]. In addition to being widely
expressed on ASM [31], b2-adrenoceptors are also expressed on
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FIGURE 1. Multiple pathways of cyclic adenosine monophosphate (cAMP)-dependent signalling. a) Agonism of b2-adrenoceptors (b2-AR) in the membrane of human

airways smooth muscle (ASM) and other cells results in the liberation of stimulatory G-protein (Gs) subunit a from the abc heterotrimeric guanine nucleotide-binding protein.

The free a subunit then augments the basal activity of one or more isoforms of adenylyl cyclase (AC), resulting in an increase in the formation of cAMP from adenosine

triphosphate (ATP). cAMP binds to the regulatory subunits of protein kinase (PK) A and, thereby, promotes the release of the catalytic subunits, which phosphorylate target

proteins to bring about changes in cell function. b) Targets of PKA include potassium channels (e.g. large-conductance calcium-activated potassium channel and ATP-

sensitive potassium channel) that open upon phosphorylation, resulting in the efflux of K+ from the cell down its concentration gradient leading to membrane rectification

(repolarisation). In ASM, K+ efflux reduces the excitability of the cell and facilitates ASM relaxation. Gating of K+ channels may also be effected by the direct interaction of Gsa

with the channel independently of cAMP and PKA. c) b2-AR agonists can also promote the cAMP-mediated activation of PKG (so-called cross-activation), leading to

functional responses in the airways such as smooth muscle relaxation. d, e) More novel b2-AR signalling cascades include the activation of the tyrosine kinase, Src, via either

inhibitory G-protein (Gi) subunit a or through Gsa leading to Ras, Raf-1, mitogen-activated protein kinase kinase (MKK) 1 and extracellular signal-regulated kinase (ERK) activation

(d) and the binding and activation by cAMP of exchange proteins directly activated by cAMP (Epac) independently of PKA, leading to Rap-1-dependent responses (e).
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many pro-inflammatory and immune cells, including mast
cells [35], macrophages [36], neutrophils [37], lymphocytes
[38], eosinophils [39], epithelial and endothelial cells [40, 41],
and both type I and type II alveolar cells [10, 42, 43]. Thus,
many cell types within the lung that are implicated in the
pathogenesis of asthma are potential targets of inhaled b2-
adrenoceptor agonists.

b2-ADRENOCEPTOR-MEDIATED RELAXATION
It is the profound bronchodilator response effected by b2-
adrenoceptor agonists that is most critical to asthma thera-
peutics. Several, possibly complementary, mechanisms have
been advanced to explain how agonism of b2-adrenoceptors on
ASM cells promotes relaxation (see below), although none are
entirely satisfactory. This lack of a unifying concept strongly
suggests that understanding of this important process is
fundamentally incomplete and prompts speculation that
additional components of b2-adrenoceptor signalling, inti-
mately involved in regulating ASM tone, remain to be defined.

Reduced sensitivity of the contractile proteins to calcium
Generically, agonist-dependent contraction of ASM requires an
increase in [Ca2+]c, which can originate extracellularly (enter-
ing through Ca2+ channels in the plasma membrane) or from
intracellular stores (fig. 2). This effect results in the Ca2+/
calmodulin(CaM)-dependent activation of myosin light chain
(MLC) kinase (MLCK), phosphorylation of the 20-kDa MLC

(MLC20) at serine (Ser)19 and subsequent muscle contraction
(fig. 2). Conversely, many texts cite the phosphorylation of
MLCK by PKA as being an event intimately related to b2-
adrenoceptor-mediated relaxation (fig. 2) [44]. Indeed, this
phosphorylation event reduces the ability of MLCK to
phosphorylate MLC20 at Ser19 by increasing its requirement
for Ca2+/CaM (i.e. it reduces its sensitivity to Ca2+; fig. 3) [45–
47]. This mechanism also adequately explains the finding that
both forskolin and isoprenaline reduce force generation in
intact depolarised tracheal smooth muscle at a constant [Ca2+]c;
similar data have also been obtained with the addition of PKA
to Triton X-100-permeabilised tracheal smooth muscle [48–50].
The additional finding that contraction of tracheal smooth
muscle by the M3 muscarinic receptor agonist, carbachol,
correlates with MLC20 phosphorylation and that this effect is
reduced by isoprenaline also supports the above hypothesis
[51]. However, at longer time points, [Ca2+]c and MLC20

phosphorylation decline towards resting levels, whereas
smooth muscle force is maintained. These data indicate that
b2-adrenoceptor-mediated relaxation of ASM is a complex
process involving mechanisms other than, or in addition to,
phosphorylation of MLCK [51, 52]. Several studies have
provided data that are completely inconsistent with the
concept that PKA-mediated phosphorylation of MLCK reduces
smooth muscle force. For example, it has been reported that, in
bovine tracheal smooth muscle, b2-adrenoceptor agonists have
no effect on the proportion of MLCK in the activated state at
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FIGURE 2. Contraction of airways smooth muscle. Contractile agonists, such as acetylcholine (ACh), bind to G-protein (Gq)-coupled muscarinic M3 receptors on the

plasma membrane, resulting in the activation of phospholipase C (PLC) and the subsequent production of inositol 1,4,5-trisphosphate (IP3) as a product of inositol

phospholipid hydrolysis. IP3 binds to ligand-gated IP3 receptors (IP3Rs) on the endoplasmic reticulum (ER) to release Ca2+ into the cytoplasm. In addition, many agonists may

also promote, either directly or indirectly, the entry of Ca2+ from the exterior of the cell via the action of Ca2+ channels in the plasma membrane. The rise in intracellular Ca2+ causes

Ca2+ to bind to calmodulin (CaM; and subsequently myosin light chain kinase (MLCK)) with the formation of a catalytically active (Ca2+)4-CaM-MLCK complex, which then

phosphorylates (P) serine 19 of the 20-kDa regulatory light chain of myosin (MLC20) to promote actin–myosin cross-linking and smooth muscle contraction. PKA: protein kinase A.
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concentrations that caused relaxation [52]. Furthermore, in
vitro, PKA phosphorylated MLCK at two distinct sites, which
are defined by separate tryptic fragments corresponding to
amino acids 990–1002 and 1003–1017 in rabbit smooth muscle
MLCK (fig. 3) [11, 46, 53, 54]. These fragments have been
designated A and B, respectively, and it appears that only
phosphorylation within the A fragment, which maps next to
the CaM-binding domain, is responsible for the inactivation of
MLCK, by reducing Ca2+/CaM binding (fig. 3) [11, 46, 53, 54].
Importantly, only minimal change in the phosphorylation
within the A site, or indeed MLCK, occurs following exposure
of the tissue to cAMP-elevating agents under conditions in
which force was shown to be greatly diminished. Thus, there is
an absence of a causal relationship between MLCK and muscle
relaxation [52, 53]. Therefore, the role of MLCK phosphoryla-
tion is equivocal and may not represent the primary mechan-
ism of PKA-mediated Ca2+ desensitisation [53]. It is worth
noting that the peptides, A and B, contain a number of other
potential phospho-acceptor sites. Indeed, the MLCK A site has
been shown to be a substrate for CaM-dependent protein
kinase II (CaMKII; fig. 4) [55, 56]. As CaMKII is highly Ca2+

sensitive, the regulation of MLCK activity via this kinase may
normally represent a mechanism of classical negative feedback
control rather than a primary site for PKA-mediated relaxation
(fig. 4) [54]. Finally, MLCK can also become phosphorylated on
other residues in response to b-adrenoceptor agonists, raising
the possibility of alternative unexplored regulatory mechan-
isms [53].

The phosphorylation status of MLC20 at Ser19 [54] is also
controlled by myosin-bound protein phosphatase 1 (PP-1M)

[57], which opposes the activity of MLCK. PP-1M, often
referred to as MLC phosphatase (MLCP) [58], or smooth
muscle myosin phosphatase [59], consists of a catalytic subunit
of 38 kDa, which is identical to protein phosphatase 1c (PP1c),
and two other proteins of ,20 kDa (M20) and ,130 kDa (fig. 4)
[59, 60]. The function of the smaller subunit is currently
unclear, whereas the larger subunit, myosin phosphatase
target subunit (MYPT1), or myosin-binding subunit, is
responsible for providing substrate specificity by virtue of
binding both PP1c and myosin [59]. As stated above, it is the
relative activities of MLCK and MLCP that regulate the
sensitivity of the contractile apparatus to Ca2+. Although it is
well established that MLCK activity is controlled by Ca2+/
calmodulin, it is now apparent that MLCP activity may also be
regulated to a high degree, and this represents a primary
mechanism involved in the regulation of smooth muscle
contractility [58, 59]. Thus contractile agonists lead to the
phosphorylation of MYPT1 and another protein, PKC-
activated protein phosphatase inhibitor 17 (CPI-17), which
appears to be primarily responsible for inactivating MLCP in
smooth muscle, with a consequent enhancement of force
development [61–63]. Interestingly, the phosphorylation of
CPI-17 at threonine (Thr38) [64, 65] and MYPT1 at Thr696 can
occur via a range of kinases, including PKC [64], integrin-
linked kinase [66], p21-activated kinase [67] and Rho-
associated protein kinase (ROCK). Therefore, MLCP and hence
MLC20 phosphorylation are potentially under the control of
multiple kinase signalling cascades (fig. 3) [58, 68–70]. In
addition, it has been reported that phosphorylation of MYPT1
by ROCK at other sites (Thr853 in humans) promotes its
dissociation from myosin and thereby reduces the activity of
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FIGURE 3. Activation of myosin light chain kinase (MLCK) by calcium-calmodulin (CaM). a) Schematic representation of the 1,147-amino-acid rabbit smooth muscle

MLCK. The catalytic core (amino acids 703–951; &) and CaM-binding domain (&) are shown, along with an expanded sequence showing part of the CaM-binding domain

and its proximity to the tryptic peptides A and B, which are phosphorylated by protein kinase (PK)A. The putative PKA phosphorylation sites (*: serine (Ser) residues 992 and

1005). b) Phosphorylation (P) of a Ser residue (probably Ser992) within the peptide A region reduces the ability of (Ca2+)4-CaM to bind and activate MLCK. Thus, MLCK

phosphorylated in this region requires a higher [Ca2+], at a fixed CaM concentration, to achieve enzyme activation. Unphosphorylated enzyme is more readily activated by

Ca2+ at a fixed CaM concentration. R: arginine; K: lysine; W: tryptophan; Q: glutamine; T: threonine; G: glycine; N: asparagine; A: alanine; V: valine; I: isoleucine; L: leucine; S:

serine; M: methionine; P: proline; E: glutamic acid. (Modified from [11].)
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MLCP (fig. 4) [70]. With respect to ASM relaxation, there are
data to suggest that b-adrenoceptor agonists may activate
MLCP and that this may play an important role in reducing
tone [71]. Moreover, MLCP can also be activated by the cyclic
guanosine monophosphate (cGMP)/cGMP-dependent PKG
pathway. Thus, relaxation of arterial smooth muscle by the
nitric oxide donor, sodium nitroprusside, is associated with
reduced MLC20 phosphorylation [72]. These events correlate
with elevated levels of cGMP, increased MLCP activity and a
concomitant loss of CPI-17 phosphorylation [72]; the cGMP
analogue, 8-bromo-cGMP, is also reported to reduce CPI-17
phosphorylation (fig. 4) [73]. Taken together, these data are
potentially significant as cAMP can cross-activate PKG in
smooth muscle (fig. 1c) [74], and studies using cyclic nucleo-
tide analogues support a role for PKG [75] rather than PKA in
reducing tracheal smooth muscle tone (see below). A further
mechanism that would prevent agonist-induced downregula-
tion of MLCP was also recently proposed for PKG and PKA
[76]. Thus phosphorylation of the MLCP targeting subunit,
MYPT1, at Ser695, was not found to affect MLCP phosphatase
activity. Instead, Ser695 phosphorylation blocked the subse-
quent phosphorylation at a nearby site (Thr696) that is involved
in phosphatase inactivation by other kinases (fig. 4). Thus
cyclic nucleotide-dependent phosphorylation of MYPT1, at
Ser695, prevents the ability of pro-contractile kinases to
inactivate the phosphatase via phosphorylation at Thr696. In
this manner, cyclic nucleotides may maintain MLCP activity to
promote smooth muscle relaxation.

More recent studies have suggested that mitogen-activated
protein (MAP) kinases may also impact on contractile

responses in airways [64, 77–79] and other types of smooth
muscle [80, 81]. In particular, MLC20 are the proposed
substrate of extracellular signal-regulated kinase (ERK)1 and
2 [82–84]. In the context of b2-adrenoceptor-mediated relaxa-
tion, MAP kinase phosphatase-1 (MKP-1), which dephos-
phorylates and inactivates both ERK and p38 MAP kinase, is
transcriptionally activated by cAMP-elevating agents, includ-
ing the b-adrenoceptor agonist, isoprenaline, by a PKA-
dependent mechanism [85, 86]. Therefore, the induction of
MKP-1 may, as has been recently described for glucocorticoids
[87], represent a novel mechanism by which b2-adrenoceptor
agonists, upon repeated use, can suppress smooth muscle
contraction.

Calcium-activated potassium channels and membrane
hyperpolarisation
Another biologically significant effect of b2-adrenoceptor
agonists is membrane hyperpolarisation [11]. In ASM, this
response is mediated through the activation of K+ channels in
the plasma membrane, which counteracts the electrical excita-
tion and subsequent Ca2+ influx that contribute Ca2+ to
contraction [88]. Of the four main classes of K+ channel, it is
the Ca2+-activated K+ channels that appear to be the most
critical [88, 89], in particular the large- or big-conductance
channel (BKCa) [90]. These channels, which are composed of
four subunits, are abundant in ASM and are a substrate for
PKA [89, 91–93]. Furthermore, their role in regulating ASM
contractility is suggested from the finding that pharmacologi-
cal blockade of these channels with charybdotoxin, and the
more selective iberiotoxin, prevents hyperpolarisation and b2-
adrenoceptor-mediated relaxation [93–96].
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FIGURE 4. Opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) in the control of airways smooth muscle contraction.

The rise in intracellular Ca2+ concentration in response to contractile agonist (fig. 3) results in the formation of (Ca2+)4-calmodulin (CaM) complexes, which, in turn, activate

MLCK. Active MLCK phosphorylates (P) serine (Ser)19 of the 20-kDa regulatory light chain of myosin (MLC20) to promote smooth muscle contraction. However, (Ca2+)4-CaM

can also activate CaM-dependent protein kinase II (CaMKII), which phosphorylates MLCK in the A site (Ser992) in order to prevent activation by CaM. This is the previously

described site for phosphorylation by protein kinase (PK)A. Ser19 phosphorylation of MLC20 is also regulated by the activity of MLCP. MLCP is a multi-protein complex

consisting of protein phosphatase (PP)1c, a 20-kDa subunit (M20), the function of which is unknown, and a targeting subunit known as myosin phosphatase target subunit

(MYPT1). The primary activity of MLCP is regulated by phosphorylation of MYPT1 by a number of pro-contractile kinases, resulting in a reduced affinity of the phosphatase for

myosin and leading to the inactivation of MLCP. In addition, the activity of MLCP towards myosin is also repressed by PKC-activated PP inhibitor 17 (CPI-17), which is itself

activated by phosphorylation at threonine (Thr) 38 by pro-contractile kinases. Finally, both PKG and PKA may maintain MLCP activity by targeting MYPT1, at Ser695, thereby

preventing the adjacent Thr696 phosphorylation, which is responsible for switching off MLCP activity. In addition, PKG appears to prevent CPI-17 phosphorylation and

activation via as yet uncharacterised mechanisms. ILK: integrin-linked kinase; ROCK: Rho-associated protein kinase; PAK: p21-activated kinase. –––|: inhibition.
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More recent studies on the role of BKCa in b2-adrenoceptor-
mediated relaxation point to the existence of both cAMP-
dependent and -independent mechanisms, as well as a role for
the cGMP/PKG signalling cascade [97, 98]. Indeed, there is
evidence for direct coupling of BKCa to Gs, which provides an
explanation for the cholera toxin- and b2-adrenoceptor-
mediated relaxation of guinea pig trachea that prevails in the
presence of AC inhibitors (fig. 1b) [21, 22, 97]. Similarly, in
vascular smooth muscle, isoprenaline is reported to modulate
BKCa activity in a membrane-delimited manner by a mechan-
ism involving Gi [99], suggesting promiscuous coupling of the
b2-adrenoceptor. Interestingly, in that tissue, the degree to
which BKCa-blocking drugs were effective at preventing b2-
adrenoceptor-mediated relaxation was highly dependent upon
the concentration of agonist [99].

More direct evidence for the coupling of b2-adrenoceptor
signalling to BKCa is the finding that co-expression of these
proteins in Xenopus oocytes resulted, in the presence of
agonist, in channel activation that was abolished either by
inhibitors of PKA or following mutation of the consensus PKA
phosphorylation sites within the BKCa a subunit (fig. 1b) [100].
More recent experiments have identified a multi-protein
signalling complex that is formed from a direct association of
the BKCa a subunit, b2-adrenoceptor and AKAP79/150 (now
classified as AKAP5) through a mechanism that may involve
leucine-zipper protein–protein interactions [101, 102]. This
unique signalling complex may also include an L-type voltage-
gated Ca2+ channel (Cav1.2), resulting in a highly localised
signalosome that mediates Ca2+- and phosphorylation-depen-
dent modulation of BKCa currents [101].

Notwithstanding the fact that some investigators contend the
importance of BKCa in b2-adrenoceptor-mediated relaxation of
ASM [88], a potentially significant level of complexity is raised
by the knowledge that the pore-forming a subunit of BKCa,
encoded by the slowpoke gene (slo1), exists as multiple splice-
variants. One of these a splices (the ZERO isoform) is activated
following phosphorylation by PKA, whereas another variant
expressing a 59-amino-acid cysteine-rich exon at splice site 2,
called the STREX-1 isoform, is inhibited [103]. Moreover, in
ASM, these variants of the BKCa a subunit show differential
sensitivity to PKA and PKG [104]. Interestingly, activation of
BKCa a subunit activity by PKA requires phosphorylation of all
four members of the a tetramer, whereas inactivation appears
to require only a single PKA-mediated phosphorylation of the
respective isoform [105]. Even more fascinating is the finding
that the glucocorticoid, dexamethasone, is able to block the
PKA-dependent inhibition of the STREX-1 isoform, but is
without effect on the PKA-mediated activation of standard
(ZERO) a subunits [106]. These extraordinary data provide a
mechanism by which glucocorticoids may selectively enhance
BKCa channel activity and provides yet another insight into the
rationale behind the possible enhanced therapeutic benefit of
combining a glucocorticoid and a b2-adrenoceptor agonist in
the treatment of asthma [6].

Role of other potassium channels
Of the other three main groups of K+ channel, it is only the
adenosine triphosphate (ATP)-dependent variants (KATP)
[107–109] that are currently believed to be functionally
important in ASM [90, 110, 111]. However, although KATP

channel openers oppose bronchoconstriction, attenuate air-
ways hyperreactivity and may play a role in b2-adrenocepotor-
mediated relaxation of vascular smooth muscle, the effect of
selective agonists, per se, on these channels in human ASM is
not well studied [112–114]. Nevertheless, KATP channels are
phosphorylated and activated by PKA in response to cAMP
analogues, forskolin and isoprenaline [115, 116], and could,
therefore, play a role in b2-adrenoceptor-mediated relaxation
of ASM (fig. 1b). This possibility needs to be revisited.

Modulation of cytosolic free calcium concentration
In addition to the well-described mechanisms for reducing the
Ca2+ sensitivity of the contractile apparatus, b2-adrenoceptor
agonists are generally believed to reduce Ca2+ influx into ASM
cells [14, 117–120]. Consistent with this effect, a number of
studies have found that the inositol 1,4,5-trisphosphate (IP3)
receptor (IP3R) is phosphorylated by PKA, apparently result-
ing in reduced Ca2+ release from the endoplasmic reticulum
(ER) in response to IP3 [121, 122]. It is now known that there
are at least three types of IP3R and that, in ASM, cAMP and
cGMP both promote the PKG-dependent phosphorylation at
Ser1755 of the type 1 IP3R that predominates in this tissue [123].
However, the significance of these findings is questionable as it
was subsequently found that phosphorylation of Ser696 of
another protein called IP3R-associated cGMP-dependent pro-
tein kinase substrate, which is intimately associated with the
IP3R, also inhibited IP3-induced Ca2+ release from the ER and
that this effect was lost if Ser696 was mutated to alanine.

Of particular interest is the recent finding that isoprenaline, in
single isolated ASM cells, increases the Ca2+ content in the
peripheral cytosol of the cell by a mechanism that is dependent
upon external Ca2+ concentration and blocked by ryanodine
[124]. In contrast, in the same cell, isoprenaline reduces the
concentration of Ca2+ in the inner cytosol [124]. Thus, b2-
adrenoceptor agonists can produce discrete spatially distinct
changes in the Ca2+ concentration within the cytosol of
individual cells that presumably have profound functional
implications, including effects on tone.

Another mechanism leading to the release of Ca2+ from the ER
is via one or more ryanodine receptor (RyR), of which there are
at least three variants [125, 126]. RyR are intracellular Ca2+

release channels and are not usually associated with non-
excitable cells [125, 126]. However, a recent study by DU et al.
[127] identified both RyR1 and RyR3 in murine ASM.
Moreover, Ca2+ release through these channels mediated
agonist (carbachol)-induced tension development, a finding
that was consistent with a previous report by HAY et al. [128].
Taken together, these data suggest that RyR may represent
novel targets for suppressing bronchoconstriction, although it
should be noted that the effect of activation of the cAMP/PKA
cascade on RyR function appears to be variable [126]. Thus,
studies specifically designed to examine the role of RyR in the
regulation of ASM tone are clearly warranted.

LONG-TERM USE OF b2-ADRENOCEPTOR AGONISTS

Asthma deaths, adverse events and effect of
glucocorticoids
Long-term use of b2-adrenoceptor agonists is common in the
management of asthma and airways hyperresponsiveness
(AHR), which is defined as an increase in the sensitivity of
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the ASM to constrictor stimuli [129–132]. Similarly, the ability
of short- and long-acting b2-adrenoceptor agonists to protect
the airways against bronchoconstrictor stimuli and to promote
bronchodilatation may be partially lost with time following
long-term use [2, 129, 131, 133–140]. Indeed, there is a greater
tendency for bronchodilator tolerance to develop to long-
acting b2-adrenoceptor agonists compared to their short-acting
counterparts, which may relate to some aspect of their
prolonged duration of agonism [141, 142]. The alteration in
ASM sensitivity to spasmogens is believed to predispose
asthmatic subjects who use b2-adrenoceptor agonist on a
regular basis to episodes of acute bronchoconstriction or ‘‘a
loss of asthma control’’ [143]. Thus, long-term b2-adrenoceptor
agonist use is associated with an increased incidence of asthma
exacerbations and other markers of morbidity and mortality
[143–145]. Indeed, this finding is consistent with the many
studies that have found that regular use of b2-adrenoceptor
agonists, in particular full agonists e.g. fenoterol, is associated
with elevated bronchial responsiveness and asthma-associated
deaths [7, 146]. Accordingly, the current recommendation of
most national asthma guidelines is to use short-acting b2-
adrenoceptor agonists as relievers (i.e. on an as-needed basis)
and not as a regular prophylactic therapy. More recently, the
issue of b2-adrenoceptor agonist safety has arisen again in
respect of long-acting compounds [141]. Thus, studies pub-
lished in 1993 indicated that, although patients taking
salmeterol generally showed better control of their asthma, a
small but nonsignificant increase in the number of deaths in
the salmeterol treatment group was noted [147]. That result led
to the Salmeterol Multi-centre Asthma Research Trial
(SMART), which also revealed a slightly increased risk of
death in subjects of certain genetic backgrounds [148]. The
issue of genetic susceptibility was again highlighted by
findings indicating that certain b2-adrenoceptor polymorph-
isms may affect patient phenotype and outcome in response to
b2-adrenoceptor agonist treatment [149], implying that genetic
analysis may, in the future, be diagnostically useful in tailoring
individual treatment regimens. The results of the SMART
further prompted a warning by the US Food and Drug
Administration, and the current recommendation from most
key sources is that long-acting b2-adrenoceptor agonists should
only be used in conjunction with inhaled glucocorticoids [150–
153]. Although the balance of expert opinion is that the benefits
of long-acting agonists, such as salmeterol, when taken
alongside glucocorticoids, far outweigh the potential risk,
there is still a pressing need to provide a rational molecular
basis for these adverse effects. This will be especially important
given the probable introduction before 2010 of ultra-long-
acting b2-adrenoceptor agonists such as carmoterol, arfomo-
terol (R,R-formoterol), indacaterol and GSK 159797
(GlaxoSmithKline, Stevenage, UK) [142].

Mechanistic basis for adverse effects
Receptor desensitisation
One widely touted explanation for the reduction in both the
bronchodilator and bronchoprotective actions of these drugs is
that regular treatment leads to b2-adrenoceptor desensitisation
(i.e. a state of refractoriness that ensues following prolonged
exposure or repeated application of an agonist [129, 141]).
Receptor desensitisation (as discussed below) can occur via a
variety of processes, including uncoupling of the receptor from

Gs, receptor internalisation [3, 10, 13], upregulation of cAMP
PDE [154–157] and downregulation of Gs [158]. However,
receptor desensitisation may not fully account for all of the
effects of prolonged high-level dosing with b2-adrenoceptor
agonists [9]. One unexpected observation, which may be of
clinical relevance, is the finding that agonism of the b2-
adrenoceptor can lead to overexpression of PLCb1 in ASM
[159]. Using b2-adrenoceptor knockout mice, MCGRAW et al.
[159] made the novel observation that methacholine (MCh)-
and 5-hydroxytryptamine (5-HT)-induced bronchoconstriction
were markedly reduced compared with the same response
evoked in wild-type animals. Conversely, MCh- and 5-HT-
induced bronchoconstriction in transgenic animals overexpres-
sing two-fold cell surface b2-adrenoceptors was significantly
enhanced. Thus, contrary to expectation, agonism of b2-
adrenoceptors in mice augments signalling through GPCRs
utilised by contractile agonists. Subsequent studies confirmed
that inositol phosphate accumulation evoked by MCh, 5-HT
and U-46619 (a thromboxane mimetic) was suppressed and
augmented in knockout and transgenic overexpressing mice,
respectively [159]. These data led to the idea that b2-
adrenoceptors antithetically regulate the actions of Ca2+-
mobilising contractile agonists and can activate mechanisms
that simultaneously promote bronchoconstriction and bronch-
odilatation. Further investigations have implicated PLCb1 as
the point of regulation since expression of this enzyme was
enhanced and inhibited, respectively, in b2-adrenoceptor
transgenic and knockout mice [159]. Taken together, these
results provide an unanticipated and intriguing explanation
for the clinical finding that long-term treatment of asthmatic
subjects with b2-adrenoceptor agonists can promote AHR and
increase the incidence of exacerbations. The mechanism(s) by
which b2-adrenoceptor agonists upregulate PLCb1 are un-
known. However, classical pharmacology would predict that
this effect is related to the intrinsic efficacy of the agonist and
that partial agonists might be less prone to antithetically
regulating signalling through PLCb1. Despite the elegance of
these studies, it should be borne in mind that much of these
data were obtained in mice following manipulation of cell
surface b2-adrenoceptor number, and it is currently unclear
to what extent such processes occur in human ASM in an
in vivo setting.

Racemic formulations
All b2-adrenoceptor agonists used clinically are racemates, in
which the R-enantiomer is generally the more active compo-
nent relative to the S-enantiomer [160]. The ability now to
produce highly pure stereoisomers has led to the view that the
less active or inactive S-enantiomer may be responsible for
evoking some of the unwanted paradoxical responses by an
unknown mechanism(s) that is unrelated to b2-adrenoceptor
desensitisation (see above). Moreover, pharmacokinetic studies
have found that the metabolic clearance of S-salbutamol occurs
at a significantly lower rate than that of R-salbutamol, such
that the unwanted effects may persist after the beneficial
actions have worn off [161]. Evidence is available that S,S-
formoterol (inactive) may also accumulate in vivo relative to the
active R,R-stereoisomer due to differential rates of metabolism
[162]. In view of these data, it is perhaps not surprising that many
new long-acting b2-adrenoceptor agonists in clinical develop-
ment are pure pharmacologically active enantiomers [142].
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Promiscuous G-protein coupling
Another mechanism worthy of consideration that could
contribute to the undesirable actions of long-term b2-adreno-
ceptor agonist treatment is the finding that b2-adrenoceptors
can couple to multiple effectors via distinct G-proteins [9, 163].
Studies conducted in the 1980s and early 1990s established that
purified b2-adrenoceptor or a peptide corresponding to the
third intracellular loop of the protein could activate pure Gi in
a reconstituted cell-free system [164, 165], indicating that this
promiscuous coupling could also occur in intact cells and,
arguably, in vivo. It is now firmly appreciated that b2-
adrenoceptors may couple to multiple guanosine triphosphate
(GTP)-binding proteins, including Gi [166, 167], leading to
Gbc-dependent activation of the MAP kinase/ERK cascade
(fig. 1d). Since this pathway is undoubtedly activated in
asthma and chronic obstructive pulmonary disease and may
contribute to the inflammation and even remodelling of the
airway wall [168], it is tempting to speculate that further
activation of ERK-dependent signalling may account for some
of the adverse clinical observations made with b2-adrenoceptor
agonists described above [169, 170]. Such effects, as are often
the case, require appropriate validation in primary cells
relevant to the airways or suitable animal models.

Other explanations
Undesirable effects of b2-adrenoceptor agonists may also be
related to several other actions. For example, chronic treatment
of human bronchi with fenoterol enhances contractile
responses to endothelin via an effect that may be due to the
sensitisation of the transient receptor potential vallinoid 1
channel [171, 172]. In addition, repression of eosinophil
apoptosis [173, 174], induction of neurokinin (NK)-2 receptor
expression [175, 176], and upregulation of histamine H1

receptor expression [177] are all examples of responses that
would be considered undesirable in the context of asthma
pathogenesis. Interestingly, glucocorticoids tend to reverse
many of these effects, demonstrating the highly beneficial
potential of combined b2-agonist/corticosteroid therapy [6].
Indeed, glucocorticoids enhanceb2-adrenoceptor expression and
function [178–180], resensitise b2-adrenoceptors [181], increase
Gsa expression [182], enhance eosinophil apoptosis [173] and
reverse the upregulation of NK-2 receptor expression [175].

EVOLVING CONCEPTS OF b2-ADRENOCEPTOR
SIGNALLING
There are numerous reports in many cells, including ASM and
pro-inflammatory cells, documenting the existence of cAMP-
dependent, yet PKA-independent, responses. Data accrued
since the mid-1990s also provide intriguing evidence that
GPCRs may not signal individually but as homo- or even
heterodimers or higher-order oligomers. Another major
advance has been the unequivocal demonstration of compart-
mentalisation of cAMP-dependent hormone action. In the
following sections, these recent advances are discussed in the
context of b2-adrenoceptor signalling and asthma therapy
together with data obtained from studies employing transgenic
mice overexpressing pulmonary b2-adrenoceptors.

b2-Adrenoceptor oligomerisation
Traditionally, it was thought that GPCRs existed and func-
tioned as discrete monomers, and that the stoichiometry of

receptor, G-protein and effector interaction was equivalent (i.e.
1:1:1) [183]. However, there are many studies demonstrating
cooperativity in agonist binding to GPCRs, which led to the
suggestion that each receptor may, indeed, assemble and
signal as part of a larger multi-receptor array. Since the early
1990s, the concept of GPCR dimers or higher-order oligomers
has gained general acceptance, and persuasive evidence for
this phenomenon in transformed cell systems is now available
[184]. It should be noted that oligomerisation has not yet been
demonstrated in nontransformed cells relevant to airways
biology and so the significance of the findings discussed below
is currently unclear. Nevertheless, the possibility that GPCRs
can function as oligomers seems likely and is worthy of
discussion in this article. As most current methods cannot
distinguish between dimers and oligomers, the former term is
used throughout the rest of this discussion as it represents the
minimum oligomeric form of the receptor [185]. Nevertheless,
this term is not meant to exclude the possibility of the existence
of higher-order GPCR complexes.

Using the technique of saturated bioluminescence resonance
energy transfer (BRET), it has been estimated that 82% of
human b2-adrenoceptors expressed on human embryonic
kidney (HEK) 293T cells exist as dimers [186, 187]. Moreover,
studies by HEBERT et al. [188] demonstrated that a peptide corres-
ponding to transmembrane domain VI of the b2-adrenoceptor,
which features a putative motif (Gly276-X3-Gly280-X3-Leu284) for
intramolecular receptor: receptor interactions at the C-terminus,
disrupted dimerisation in a concentration-dependent manner.
Significantly, this effect was associated with impaired agonist,
but not forskolin- or sodium fluoride-, induced AC activation,
indicating that dimeric b2-adrenoceptors may be the minimum
functional signalling unit.

An important focus of research following the discovery of
GPCR dimerisation was the mechanism(s) regulating the
formation of receptor complexes. ANGERS et al. [189] advanced
three possible scenarios: 1) GPCR dimers are stable preformed
complexes that are constitutively expressed at the cell surface
and are unaffected by ligand binding; 2) GPCR dimers are
constitutively expressed at the cell surface but ligands can alter
the degree of dimerisation; and 3) ligand binding is a
prerequisite for GPCR dimerisation. With respect to the b2-
adrenoceptor, early studies found a high degree of constitutive
dimerisation in Sf9 cells expressing the recombinant protein,
which was increased (albeit modestly) by isoprenaline, an
observation that favours scenario two [187, 188]. However, an
emerging consensus for family A GPCRs, which include the b2-
adrenoceptor, is that ligands bind to constitutively expressed
dimers and that the apparent increase in ligand-induced
dimerisation, implied from BRET studies, probably represents
conformational changes of pre-existing dimers rather than the
formation of new receptor complexes [187, 190].

Thus the question remains, where and how is b2-adrenoceptor
dimerisation regulated? It is well established that the assembly
within the ER of proteins in general is a common form of
quality control used by a cell to permit the export of correctly
folded complexes [191]. This process also appears to apply to
GPCRs. Indeed, immature forms of the b2-adrenoceptor have
been recovered as dimers from ER-enriched fractions of HEK
293T cells, suggesting that complex formation takes place early
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during receptor biosynthesis [192, 193]. Further support for
this hypothesis comes from the fact that mutant b2-
adrenoceptors that lack the normally expressed heterologous
export motif do not leave the ER en route to the plasma
membrane. Similarly, b2-adrenoceptors harbouring the reten-
tion signal, which ordinarily is masked if the protein is folded
correctly (i.e. is functionally competent), still dimerise with
wild-type receptors, but, again, do not move to the cell surface.
Moreover, disruption of the putative dimerisation motif in
transmembrane domain VI (see above) prevents normal
trafficking of the receptor to the plasma membrane. Thus,
dimerisation is seemingly part of the maturation process of
b2-adrenoceptors, providing an important mechanism that
permits the production of functionally competent ligand
recognition and signalling units.

An additional level of complexity is that a GPCR may dimerise
with a different, but closely related, receptor. BRET studies
have found that b1- and b2-adrenoceptors can form hetero-
dimers with a binding affinity that is similar to homodimeric
b2-adrenoceptor complexes [186]. Dimerisation of the b2-
adrenoceptor with the angiotensin II type 1 receptor [194]
and both d- and k-opioid receptors has also been described [195].
The latter finding has important consequences for signalling, as
each member of the dimer may couple to a different G-protein (Gs

and Gi, respectively). For example, d-opioid receptors co-
expressed in HEK 293T with b2-adrenoceptors undergo rapid
isoprenaline-induced endocytosis. Similarly, etorphine (a d-
agonist) promotes the internalisation of b2-adrenoceptors in the
same system [195]. However, b2-adrenoceptors, when co-
expressed with k-receptors, undergo neither opioid- nor
isoprenaline-induced endocytosis [195]. Moreover, isoprena-
line promotes the phosphorylation of ERK1 and ERK2 in
cells expressing heterodimers composed of b2-adrenoceptors
and d-receptors, which is essentially lost in cells in which the
opioid binding partner is replaced with the k-receptor [195].
Thus, in expression studies, the composition of GPCR dimers
has a marked influence on G-protein coupling, receptor
signalling, agonist-induced desensitisation and ligand phar-
macology, and could help provide explanations for many of
the effects described in the present review [185, 196].
Accordingly, this phenomenon may have significant implica-
tions for drug design in the future. Indeed, the crystal structure of
the GPCR rhodopsin illustrates that its cytoplasmic surface is too
small to accommodate, simultaneously, more than a single point
of contact with either the a and bc subunits of a G-protein [196,
197]. This has consequently led to the suggestion that two
receptors might be necessary to satisfy the binding requirements
of a single G-protein [197, 198]. It is clear from the preceding
discussion that a number of key questions need to be addressed.
These include the relevance and prevalence in native tissues of
GPCR homo- or heterodimers [199], and whether the biosyn-
thesis of these novel signalling arrays and the functional
responses they mediate are affected by a multitude of factors,
including airways disease, sexual dimorphism, drug therapy,
age or genetic polymorphisms.

Studies using transgenic mice overexpressing functional
b2-adrenoceptors
Elegant studies by MCGRAW et al. [200] have revealed new
insights into the regulation of ASM tone by b2-adrenoceptors.

In airway myocytes harvested from the trachea of transgenic
mice overexpressing, ,75-fold, b2-adrenoceptors, basal AC
activity and cAMP content are significantly greater than in
smooth muscle cells taken from the trachea of nontransgenic
litter mates. In addition, isoprenaline-stimulated cAMP accu-
mulation and AC activity are enhanced further in transgenic
animals, indicating that, despite the markedly increased
receptor density, maximal constitutive activation of AC was
not attained. Controversially, these data imply that the b2-
adrenoceptor is the rate-limiting component of the receptor/
Gs/AC signalling cascade, at least in murine airway myocytes
and challenges the contention, for which unequivocal empiri-
cal data are lacking, that there exists on ASM a large receptor
reserve, at maximal response, for b2-adrenoceptor agonists
used in clinical practice [201–203]. Indeed, if the spare-receptor
hypothesis is correct, an increase in receptor density would not
be expected to have any major impact on the maximum
agonist-induced response.

Functionally, targeted overexpression of b2-adrenoceptors on
ASM has marked consequences. Thus MCh-induced bronch-
oconstriction is significantly reduced in transgenic mice in the
absence of a b2-adrenoceptor agonist compared with animals
not expressing the transgene [200]. Furthermore, the magni-
tude of bronchoconstriction evoked by MCh in nontransgenic
animals in the presence of salbutamol is greater than that
achieved in transgenic mice not treated with agonist [200]. As
identified by the authors, these data are consistent with a
multi-state model of GPCRs, in which the effector, AC in this
case, is activated by the receptor in the absence of agonist.
Obviously, in order to account for this model, it is necessary to
propose that the equilibrium in the absence of agonist favours
the inactive conformation. In the experiments described by
MCGRAW et al. [200], 75-fold overexpression of ASM b2-
adrenoceptors allowed sufficient spontaneous coupling to
severely limit MCh-induced tone in the absence of agonist.
Assuming the pharmacological behaviour of the murine b2-
adrenoceptor can be extrapolated to humans, these transgenic
animals exhibit what may be described as an antiasthma
phenotype, which tempts speculation that targeted over-
expression of b2-adrenoceptors to ASM cells could provide a
genetic therapy for asthma [200].

The density of b2-adrenoceptors on airway epithelial cells also
has an impact on the tone of the underlying smooth muscle.
Using the rat Clara cell secretory protein promoter to enhance,
two-fold, cell surface b2-adrenoceptor number on airway
epithelial cells in mice, MCGRAW et al. [204] found that the
dose of MCh required to increase, over baseline, airways
resistance by 200% was significantly higher compared with
that in nontransgenic litter mates. As in the smooth muscle
study described above, the protection afforded against MCh-
induced bronchoconstriction in the transgenic animals was the
same as that produced by inhaled delivery of salbutamol to
mice not expressing the transgene [204]. These data demon-
strate that the density of b2-adrenoceptors on epithelial cells
can regulate ASM tone in the absence of agonist, implying that
the degree of spontaneous coupling to AC is increased in
transgenic mice. The mechanism underlying this protective
effect is unknown, but it is not apparently due to the enhanced
release from the epithelium of nitric oxide or prostaglandin
(PG)E2 [204]. Thus, the targeted expression of b2-adrenoceptors
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to the airways epithelium could also provide a novel gene
therapy for asthma.

Src tyrosine kinases as effectors of b2-adrenoceptor
agonism
In addition to activating the classical cAMP/PKA cascade
shown in figure 1a, b2-adrenoceptor agonists have also been
shown to stimulate MAP kinase signalling, although the
mechanism underlying this effect is not completely under-
stood. In the original description of this phenomenon, DAAKA

et al. [169] reported that exposure of HEK 293 cells to
isoprenaline led to cAMP/PKA-dependent phosphorylation
and desensitisation of the b2-adrenoceptor and a consequent
switch in receptor coupling from Gs to Gi. Activation of MAP
kinase then occurred by the sequential activation of a SrcRSon
of Sevenless (SOS)RRasRERK-dependent signalling cascade
initiated by Gibc subunits [205–207]. However, in a subsequent
study using the same cells, no evidence for Gs:Gi switching was
found; indeed, FRIEDMAN et al. [170] reported that ERK is
phosphorylated by a Src-dependent mechanism mediated by
the classical GsaRACRPKA cascade (fig. 1d). Regardless of
the precise mechanism of isoprenaline-induced ERK activa-
tion, these data clearly implicate Src tyrosine kinases in b2-
adrenoceptor-mediated signalling. Significantly, this finding is
not restricted to HEK 293 cells and seemingly occurs in
primary cells of the lung and airways. For example, PP2, a Src
tyrosine kinase inhibitor, was recently reported to partially
block b2-adrenoceptor-mediated actin depolymerisation of
ASM cells [208, 209], by a mechanism that was insensitive to
pertussis toxin and the MAP kinase kinase (MKK) 1/2 inhibitor,
PD098059. The additional observation that cholera toxin
mimicked the effect of isoprenaline [209] is consistent with the
data of FRIEDMAN et al. [170] that a Gs/Src-mediated pathway in
ASM is responsible for this effect (fig. 1d) [209, 210].

An elevation of cAMP levels also leads to the inhibition of both
growth responses and ERK activation in fibroblasts [211–213].
Again, this process appears to involve a PKA-dependent
phosphorylation of Src, or a Src-like kinase, leading to the
activation of the small GTPase, Rap1, and subsequent repres-
sion of the RafRMKK1/2RERK cascade [214]. However, it is
important to note that, in a different cell line, this signalling
cascade can also be activated via PKA-dependent phosphor-
ylation of Src [215]. Clearly, these data demonstrate the
potential diversity of b2-adrenoceptor signalling and highlight
the importance of characterising physiologically relevant
responses under physiological conditions in nontransformed
cells of the tissue of interest.

cAMP-guanine nucleotide exchange factors: novel cAMP-
dependent effectors
Until relatively recently, most cAMP-dependent functional
responses were generally believed to be mediated by one or
more isoforms of PKA. However, in 1998, the world of cAMP
signalling underwent radical reshaping, with the discovery of
cAMP-activated guanine nucleotide exchange factors (GEFs;
cAMP-GEFs), also known as exchange proteins directly
activated by cAMP (Epacs) [216–218]. These GEFs function in
a manner similar to SOS, which is the GEF responsible for
unloading guanosine diphosphate from Ras and promoting
Ras-GTP formation and subsequent activation of the

RafRMKKRERK cascade [218, 219]. Thus, binding of cAMP
to cAMP-GEFs allows the activation of an associated small
GTPase. In the case of cAMP-GEFI (Epac), Rap1 was suggested
to be the downstream G-protein, and has been shown to
activate MAP kinase kinase kinase, B-raf and downstream
MAP kinase cascades (fig. 1e) [216, 220]. However, the
situation in respect of cAMP-GEFs was complicated from the
outset by an initial report describing the existence of two
cAMP-binding GEFs, cAMP-GEFI and cAMP-GEFII (Epac 2)
[217]. In terms of pulmonary physiology, the role of cAMP-
GEFs is currently unclear since neither isoform is apparently
expressed at a level that is detectable in adult lung (cf. foetal
lung) [217]. Furthermore, the initial description of a Rap1–B-raf
pathway leading to ERK activation may not necessarily occur
via cAMP-GEFs. Indeed, the use of a cAMP-GEF-selective
cAMP analogue that activated Rap1 failed to influence ERK
activity, suggesting that effects of cAMP on ERK are
independent of Rap1 [221]. In addition, there are a number
of other signalling processes and proteins that may also be
targeted by cAMP-GEFs, indicating the need to elucidate the
functional significance of these novel pathways [218].
Nevertheless, cAMP-GEFs are now being widely examined
with a view to explaining the increasing number of observa-
tions of cAMP-dependent PKA-independent effects, especially
since a number of other putative cAMP-binding proteins do
not seem to bind cAMP [222].

Activation of PKG
Another key signalling pathway that needs to be considered
more carefully in the context of b2-adrenoceptor-mediated
relaxation is the cGMP/PKG cascade. Activation of PKG is a
well-established mechanism leading to relaxation of smooth
muscle [223], including ASM [224–226], which may involve the
direct phosphorylation and activation of BKCa [227]. In
addition, PKG can lead to the repression of certain genes that
may be of potential significance in airways diseases such as
asthma, of which inflammation is a characteristic feature [223,
225, 226]. Of particular interest is the finding that K+-induced
contractions of guinea pig tracheal segments were more
potently inhibited by cell permeant cGMP analogues than by
analogues of cAMP [75]. This inhibitory effect correlated more
closely with the ability of the same analogues to activate PKG
rather than PKA, suggesting that, in this tissue at least, PKG
plays a dominant role in regulating relaxation [75]. The
activation of PKG by cAMP [228], which is referred to as
cross-activation, has been demonstrated in intact smooth
muscle over a concentration range that is remarkably similar
to that required to activate PKA, suggesting that it is of
physiological relevance (fig.1c) [74, 228]. Further exploration of
cross-activation has revealed that the binding of cAMP to PKG
may promote autophosphorylation, leading to an increase in
the affinity of cAMP for the enzyme [229, 230]. Taken together,
these data suggest that PKG is a strong candidate for mediating
cAMP-dependent, PKA-independent responses in the airways
[25]. This conclusion is supported by the finding that inhibitors of
PDE5, a cGMP PDE, may be effective bronchodilators [231] and
show independent anti-inflammatory activity [232].

Compartmentalisation of b2-adrenoceptor signalling
Agonist-induced acute homologous desensitisation of b2-
adrenoceptors involves receptor phosphorylation by PKA
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and/or one or more GPCR kinases (GRKs), which have the
unique ability to recognise the agonist-occupied form of the
receptor [233]. In addition, the ability of GRKs to disrupt b2-
adrenoceptor signalling through phosphorylation is enhanced
,10-fold following the binding of scaffold proteins called b-
arrestins [234, 235]. Recently, elegant studies have extended
the scaffold functions of b-arrestin to include certain members
of the PDE4D family of enzymes, including PDE4D3 and, in
particular, PDE4D5 [236, 237]. Thus, following agonism of b2-
adrenoceptors expressed in HEK 293 cells, a b-arrestin/PDE4D
complex forms and is recruited to the receptor, where it limits
activation of the cAMP/PKA cascade by simultaneously
suppressing AC activity, through receptor desensitisation,
and accelerating the removal of cAMP, through enhanced
degradation [236]. It appears that the unique amino-terminal
region of PDE4D5 confers preferential interaction with b-
arrestins and may represent the normal binding partner of this
scaffold in intact cells [237]. This targeting of PDE4D to the b2-
adrenoceptor complex may have highly discrete functional
implications for the cell as it will selectively regulate the
activity of a pool of PKA that is co-localised to the same
subcellular microdomain via an interaction with an AKAP
[238]. Both AKAP5 [239] and AKAP12 (gravin) [240, 241] have
been shown to be recruited to the b2-adrenoceptor, although
only the latter species is thought to be functionally relevant
[238]. Thus, compartmentalisation of signalling allows the level
of cAMP to be controlled very tightly within highly discrete
intracellular loci, presumably with unique biological conse-
quences, including the extent to which the b2-adrenoceptor
undergoes PKA-dependent phosphorylation [242].

NOVEL MECHANISMS OF b2-ADRENOCEPTOR
DESENSITISATION
A controversial issue that has received considerable attention
in the past is whether b2-adrenoceptor agonists exhibit anti-
inflammatory activity. In vitro, it has been known for some
time that exposure of purified immune and pro-inflammatory
cells, such as eosinophils, mast cells, T-lymphocytes and
neutrophils, to b2-adrenoceptor agonists generally results in
the inhibition of various functional indices of activation [243].
Similarly, acute administration of b2-adrenoceptor agonists to
humans effectively suppresses inflammatory leukocyte infil-
tration and stabilises mast cells in response to direct and
indirect stimuli [243]. However, there is little evidence that
regular administration of these drugs can prevent AHR, the
late-phase asthmatic response or the activation in vivo of those
cells that initiate and perpetuate the chronic inflammation that
characterises asthma [2, 244].

The inability of b2-adrenoceptor agonists to resolve asthmatic
inflammation may be due to the development of tolerance (or
desensitisation) and is consistent with the rapid loss of
responsiveness of essentially all pro-inflammatory and immu-
nocompetent cells following prolonged exposure to b2-
adrenoceptor agonists in vitro [2, 10]. Two major molecular
mechanisms that can account for b2-adrenoceptor desensitisa-
tion have been extensively described. One of these promotes
short-term homologous refractoriness and involves the uncoup-
ling of the receptor from Gs by mechanisms that require
phosphorylation of Ser and Thr residues at the C-terminus of
the agonist-occupied receptor [245]. This reaction is catalysed

by at least three GRK family members (GRK2, GRK3 and
GRK5), which are attracted to, and anchored at, the plasma
membrane by Gsbc heterodimers that are liberated following
agonist-induced activation of Gs. Signalling through the
receptor is then halted by the subsequent binding of b-
arrestin, a soluble protein which prevents further coupling to
Gs [235]. The b2-adrenoceptor is similarly desensitised by
PKA following phosphorylation of Ser and Thr residues
present within the third intracellular loop of the protein in
response to an increase in intracellular cAMP [233, 246].
Evidence is also available that Gs can activate Src tyrosine
kinases, which have been shown to bind both b-arrestins and
the phosphorylated form of the receptor, as well as activate
GRKs (fig. 1d) [205, 207]. Furthermore, the recruitment of
kinases (GRKs and PKA) to the receptor complex during the
desensitisation process may be specifically targeted, and
enhanced, via interactions with certain AKAPs [240, 247].
This AKAP-dependent targeting may also be critical in any
later receptor resensitisation [241]. Finally, it now appears
that, in addition to desensitisation of Gs-coupled signalling
(above), the recruitment of PDE4D5 via interaction with b-
arrestin and AKAP79 (now AKAP5) is also critical in
terminating the PKA-dependent switching of the b2-
adrenoceptor to Gi-dependent signalling down to ERK [238].

The other established process that promotes prolonged periods
of desensitisation, and which may be of greater clinical
relevance [2], is the downregulation of b2-adrenoceptor
number, during which physical internalisation and subsequent
degradation of the receptor occurs [233]. This may involve
inhibition of b2-adrenoceptor transcription and/or increased
post-transcriptional processing of b2-adrenoceptor mRNA
[233]. In addition to these well-characterised processes,
scrutiny of studies published since the mid-1970s indicates
that additional, and in some cases neglected, mechanisms
could also play a major role in regulating b2-adrenoceptor
signalling and two of these are described below.

Upregulation of phosphodiesterase 4
One mechanism that can contribute to desensitisation is the
upregulation of one or more cAMP PDE isoenzymes [248]. This
can occur through either post-translocational modification (e.g.
phosphorylation) of existing enzyme or gene induction [249].
With respect to pulmonary b2-adrenoceptor expression, it is
the PDE4 isoenzyme family, which is encoded by four genes
(PDE4A–PDE4D), that is a primary regulator of cAMP
metabolism [250, 251]. In this paradigm, tolerance to b2-
adrenoceptor agonists is directly related to an increase in PDE
activity. This effect would theoretically compromise cell
signalling through all Gs-coupled receptors, leading to hetero-
logous desensitisation of susceptible cells to cAMP-dependent
events. It is hypothesised that this would occur as a direct
consequence of regular treatment with b2-adrenoceptor ago-
nists. Significantly, this model does not exclude the participa-
tion of the other established mechanisms of desensitisation,
described above. Indeed, phosphorylation of the b2-adreno-
ceptor by GRKs and PKA could, theoretically, act in concert
with cAMP PDE to limit the magnitude and duration of b2-
adrenoceptor-mediated signalling [248].

Although generally ignored, the concept of increased cAMP
PDE activity as a mechanism of reducing the sensitivity of cells
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to hormones and other agonists that interact with Gs-coupled
receptors is not new. Indeed, evidence that this phenomenon
accounts for much of the reduced responsiveness that cells
exhibit to chronic hormone exposure was provided in 1978
[252], and has since been documented in vitro in many cells
implicated in the pathogenesis of asthma, such as T-
lymphocytes, neutrophils, monocytes, macrophages, platelets
and ASM [154–157, 252–261]. Upregulation of PDE has also
been demonstrated empirically in transfection experiments in
which the engineered expression of cAMP PDE in yeast and
mammalian cells reduces their sensitivity to hormones that
augment AC activity [262–265].

An important issue that arises from the aforementioned
discussion is whether or not induction and/or phosphoryla-
tion of PDE4 can be demonstrated in immune/pro-
inflammatory cells and in vivo in response to b2-adrenoceptor
agonists. Although limited data are available, the answer to
both parts of this question is yes. TORPHY et al. [154] demon-
strated that the b2-adrenoceptor agonist, salbutamol, and the
selective PDE4 inhibitor, rolipram, when given in combination
to the human monocytic cell line, U937, increased PDE4
activity in a time-dependent manner. Significantly, this effect
required new protein synthesis, indicating that the increase in
enzyme activity was attributable to the induction of one or
more PDE4 isogenes. RT-PCR and Western blot analyses
performed by the same authors demonstrated, subsequently,
that salbutamol and rolipram increased the expression of
PDE4A and PDE4B at both the mRNA and protein level [155].
A similar investigation by VERGHESE et al. [261] essentially
confirmed these observations. Thus, exposure of human
peripheral blood monocytes and Mono Mac 6 cells to cAMP-
elevating agents promoted the transcription of the PDE4A, B
and D isogenes, with the generation of at least three distinct
mRNA transcripts and proteins. ENGELS et al. [266] have also
reported induction of PDE4 isogenes in U937 and Jurkat T-cells
in response to prolonged exposure to dibutyryl cAMP, and,
more recently, the same phenomenon was documented in
guinea pig macrophages [266], human T-lymphocytes [156],
human neutrophils [256] and human ASM cells [157]. In the
latter study, upregulation of the PDE4D5 splice variant was
described, and this may be of particular significance given that
this isoform interacts preferentially with b-arrestins and may
play a role in b2-adrenoceptor desensitisation (see above)
[237, 238].

A consistent and highly significant finding is that the
responsiveness of many cells in which PDE4 is induced to
cAMP-generating agonists is restored, at least in part, by the
addition of a PDE inhibitor, providing compelling evidence
that upregulation of PDE is a significant contributory factor to
the development of tolerance. In 2000, FINNEY et al. [267]
reported the upregulation of PDE4 in the lungs of rats treated
with salbutamol for 7 days. Thus, this phenomenon can be
produced in vivo and may be of clinical relevance in the
development of tolerance following long-term use of b2-
adrenoceptor agonists.

Downregulation of stimulatory G-protein subunit a
Another poorly researched process that could promote
heterologous desensitisation of Gs-coupled receptors is a
reduction in the abundance of plasma membrane-bound Gsa

[268]. FINNEY and co-workers [158, 267] have reported that
long-term systemic treatment of rats with salbutamol and
salmeterol blocks the ability of these agonists subsequently to
protect against acetylcholine-induced bronchoconstriction.
Moreover, the bronchoprotective effect of PGE2, which also
acts through Gs-coupled prostanoid receptors of the PGE2

receptor 4 subtype in rat airways [269], was similarly
abolished, indicating that a state of heterologous desensitisa-
tion had been effected. Significantly, further studies found that,
in the lungs of rats treated with b2-adrenoceptor agonists, there
was a ,50% reduction in the level of Gsa and an associated
impaired ability of cholera toxin to promote cAMP accumula-
tion ex vivo.

INTERACTION OF b2-ADRENOCEPTORS WITH OTHER
PROTEINS
A number of additional interactions have been described that
extend the multiplicity of b2-adrenoceptor-mediated responses,
although none have yet been demonstrated in the airways. In
particular, the b2-adrenoceptor features a consensus PDZ
domain at its carboxyl terminus that has been shown to interact
in an agonist-dependent manner with the PDZ domain of
the Na+/H+-exchanger regulatory factor (NHERF) [270]. In
the absence of b2-adrenoceptor agonist, NHERF binds to the
type 3 Na+/H+ exchanger, thereby inhibiting pump activity
[271]. However, this inhibitory activity is relieved in the
presence of agonist, resulting in b2-adrenoceptor-mediated
activation of the Na+/H+ exchanger [270]. Evidence is also
available that the NHERF plays a role in endocytic sorting of
b2-adrenoceptors [272]. Thus, when bound to NHERF, inter-
nalised b2-adrenoceptors are recycled to the plasma mem-
brane, whereas loss of this interaction results in lysosome
targeting and receptor degradation [272].

b2-Adrenoceptors have been shown to interact with at least
two other proteins: the a subunit of eukaryotic initiation factor
2B [273], which is a nucleotide exchange factor that regulates
mRNA translation, and N-ethylmaleimide-sensitive factor
[274]. The former and latter interactions may have a role in
regulating AC activity and b2-adrenoceptor internalisation/
recycling respectively.

CONCLUDING REMARKS
According to PubMed records, cyclic adenosine monophos-
phate, since its discovery in 1958, is probably the second-most-
studied second messenger, rivalled only by calcium, and has
been implicated in a bewildering number of physiological and
pathophysiological processes. It is, therefore, perhaps not
surprising that the traditional dogma that activators of
adenylyl cyclase, exemplified by agonists of the b2-
adrenoceptor, exert all of their effects by recruiting a single
highly conserved pathway that involves the activation of
protein kinase A and the subsequent phosphorylation of target
proteins, has been discredited as the sole mechanism of action
(fig. 1a). The recently appreciated diversity of b2-adrenoceptor
signalling, which is likely to evolve further, may offer clues as
to the aetiology of some of the unwanted clinical effects
elicited by b2-adrenoceptor agonists and provide opportunities
for the future development of novel and safer pharma-
ceuticals for the treatment of asthma and related respiratory
diseases.
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