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Sleep, sleep-disordered breathing and

metabolic consequences
P. Lévy*, M.R. Bonsignore#," and J. Eckel+

ABSTRACT: Sleep profoundly affects metabolic pathways. In healthy subjects, experimental

sleep restriction caused insulin resistance (IR) and increased evening cortisol and sympathetic

activation. Increased obesity in subjects reporting short sleep duration leads to speculation that,

during recent decades, decreased sleeping time in the general population may have contributed

to the increasing prevalence of obesity. Causal inference is difficult due to lack of control for

confounders and inconsistent evidence of temporal sequence.

In the general population, obstructive sleep apnoea (OSA) is associated with glucose

intolerance. OSA severity is also associated with the degree of IR. However, OSA at baseline

does not seem to significantly predict the development of diabetes. Prevalence of the metabolic

syndrome is higher in patients with OSA than in obese subjects without OSA. Treatment with

continuous positive airway pressure seems to improve glucose metabolism both in diabetic and

nondiabetic OSA but mainly in nonobese subjects.

The relative role of obesity and OSA in the pathogenesis of metabolic alterations is still unclear

and is intensively studied in clinical and experimental models. In the intermittent hypoxia model in

rodents, strong interactions are likely to occur between haemodynamic alterations, systemic

inflammation and metabolic changes, modulated by genetic background. Molecular and cellular

mechanisms are currently being investigated.
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T
here is compelling evidence that sleep
apnoea represents a major cardiovascular
risk [1–8]. Many studies have reported an

independent association of obstructive sleep
apnoea (OSA) with several components of the
metabolic syndrome (MetS), particularly insulin
resistance (IR) and abnormal lipid metabolism [9,
10]. This association may further increase cardi-
ovascular risk [11], since the MetS is recognised
to be a risk factor for cardiovascular morbidity
and mortality [12, 13].

Rapidly accumulating data from both epidemio-
logical and clinical studies [14, 15] suggest that
OSA is independently associated with alterations
in glucose metabolism and places patients at an
increased risk of the development of type 2
diabetes. Recent reports have indicated that
many patients with type 2 diabetes have OSA
[15]. Even though there is emerging evidence that
the relationship between type 2 diabetes and
OSA is at least partially independent of adiposity
[16, 17], there are several important limitations in
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the published literature that do not allow causality to be
established, i.e. cross-sectional studies, use of snoring as a
surrogate marker of OSA, and various techniques for the
assessments of glucose metabolism and type 2 diabetes. Recent
state-of-the art reviews have highlighted these limitations and
emphasised the need for further clinical research in this
direction [14, 15].

In this article, we will review the physiological effects of sleep
on glucose metabolism and the possible role of sleep
disruption on the pathogenesis of metabolic abnormalities,
the clinical evidence linking sleep disordered breathing (SDB)
and impairment of glucose metabolism, the current evidence
regarding the impact of continuous positive airway pressure
(CPAP) treatment on glucose and insulin control, and the
major role of adipose tissue and visceral obesity. We will
further discuss the possible mechanisms by which OSA may
contribute to metabolic dysregulation in light of the published
evidence in humans and animal models, i.e. increased
sympathetic activity, sleep fragmentation and intermittent
hypoxia. This article will also refer to a European
Respiratory Society Research Seminar held in Dusseldorf
(Germany) from November 30–December 1, 2007 in conjunc-
tion with two EU COST (Cooperation in the field of Scientific
and Technical Research) Actions on ‘‘Cardiovascular risk in
OSAS’’ (B26) and ‘‘Adipose tissue and the metabolic syn-
drome’’ (BM0602).

PHYSIOLOGICAL AND CLINICAL DATA
Sleep and metabolism
OSA may affect metabolism indirectly, by decreasing the
amount and/or quality of sleep. Sleep loss profoundly affects
metabolic pathways [18]. In healthy subjects, experimental
sleep restriction caused IR, together with increased evening
cortisol and sympathetic activation [19]. Sleep restriction was
also shown to be associated with reduced leptin and increased
ghrelin plasma concentrations and increased appetite [20].
Modest acute sleep loss, such as selective slow-wave sleep
deprivation, may alter glucose tolerance in normal subjects
[21]. In general population cohorts, short sleep duration was
associated with altered plasma levels of leptin [22, 23] and
ghrelin [22] and increased body mass index (BMI) [22, 23]. In
young adults, a prospective study found a significant risk of
obesity in subjects reporting short sleep duration [24], leading
to speculation that decreased sleeping time over the recent
decades may have contributed to the increasing prevalence of
obesity in the general population. In addition, in general
population cohorts, difficulties falling asleep, difficulties in
sleep maintenance and reduction in sleep duration have been
found to be associated with an increased incidence of diabetes
in males [25, 26].

The causal relationship between sleep duration and obesity is
far from being proven [27–30], as shown by recent critical
reviews or meta-analyses of published data in this field [27, 31,
32]. Although cross-sectional studies from around the world
show a consistent increased risk of obesity among short
sleepers in children and adults [32], prospective data seem to
fail to show this [33]. Causal inference is difficult due to lack of
control for important confounders and inconsistent evidence of
temporal sequence in prospective studies [27, 32]. Moreover,
effect size and importance of sleep duration in comparison to

other risk factors for obesity have been recently challenged [27,
34, 35]. However, causality is often difficult to establish in
epidemiology owing to biological complexity and multiple
interactions [36]. Moreover, a modest effect size, such as the
average decrease in BMI by 0.35 units associated with one extra
hour of sleep in the general population [32], may be
unimportant on an individual basis but of major significance
in public health [36]. From the available relative risk ratios and
short sleep prevalence, YOUNG [36] calculated that 5–13% of the
total proportion of obesity in children and 3–5% in adults
could be attributable to short sleep.

The mechanisms that are possibly involved are of interest.
Sleep deprivation has been found to induce a pro-inflamma-
tory state, with increased release of interleukin (IL)-6 [37, 38]
and production of IL-6 and tumour necrosis factor (TNF)-a by
circulating monocytes [39]. Nuclear factor (NF)-kB activation
has been identified as a molecular pathway by which sleep
restriction may influence leukocyte inflammatory gene expres-
sion and the risk of inflammation-related disease [40]. The pro-
inflammatory effects of sleep restriction may, at least partly, be
mediated by stress activation, i.e. sympathetic and/or cortisol
activation [41–43]. In addition, the group of KNUTSON and VAN

CAUTER [44] speculated that the adverse impact of sleep
deprivation on appetite regulation is likely to be driven by
increased activity in neuronal populations expressing the
excitatory peptides orexins, which promote both waking and
feeding [44–46].

In summary, sleep loss could affect metabolism via several
mechanisms, but it is difficult to apply the currently available
data to OSA. There are no studies specifically addressing the
effects of sleep fragmentation (such as in OSA) on metabolism,
as recently stated [47].

Association between sleep apnoea, glucose intolerance
and diabetes
Early studies indicated a possible causal association between
the presence of OSA and development of type 2 diabetes.
However, most studies exhibited significant limitations includ-
ing small sample size, highly selected populations, inadequate
adjustment for confounders and use of surrogate markers of
OSA [15]. Methods have also been highly variable among
studies. Table 1 summarises current definitions used in clinical
studies on glucose metabolism and the MetS [48–50].

Table 2 summarises the available epidemiological studies on
the association of SDB with IR and diabetes [16, 51–62]. In
general population studies [25, 63], snoring was shown to be a
risk factor for the development of diabetes over 10 yrs
independent of confounding factors. Importantly, two popula-
tion cross-sectional studies including only lean subjects (BMI
,25 kg?m-2) found an independent association between
frequent snoring and reduced glucose tolerance [56, 62].
Several other sleep anomalies have also been related to type
2 diabetes [25, 26, 63]. The relationship between self-reported
sleep complaints and risk of diabetes may be less pronounced
in females [63] than in males [25]. The Sleep Heart Health
Study [16] (performed in 2,656 individuals) showed that sleep-
related hypoxaemia was associated with glucose intolerance
independently of age, sex, BMI and waist circumference. OSA
severity was also associated with the degree of IR after
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adjustment for obesity. More recently, these data have been
confirmed in the same cohort, and the association between
SDB and impaired glucose metabolism was found to be similar
in normal-weight and overweight subjects [61]. The Wisconsin
Sleep Study (n51,387) demonstrated a significant cross-
sectional association between OSA and type 2 diabetes for all
degrees of OSA, which persisted for moderate-to-severe OSA
after adjustment for obesity (odds ratio 2.3) [56]. However,
although the longitudinal data showed that OSA at baseline
predicted the development of diabetes over 4 yrs, significance
disappeared after adjusting for obesity [56]. Finally, OSA was
recently found to be independently associated with decreased
insulin sensitivity in a population-based sample of females
investigated with full-polysomnogram (PSG) and insulin
sensitivity index (ISI) calculated from the results of an oral
glucose tolerance test [62].

Similar data have been obtained in samples of OSA patients
(tables 3 and 4) [64–80], with a large prevalence of positive [63,
64–79] rather than negative [78–80] studies. In clinical popula-
tions, OSA patients characterised by full-PSG were signifi-
cantly more likely to have impaired glucose tolerance (IGT)
and diabetes than subjects free of OSA syndrome (OSAS) [71].
The relationship between SDB and impaired glucose–insulin
metabolism was independent of obesity and age [71]. A
number of reports found increased IR and IGT in OSAS
patients, independent of body weight [68–70, 75], and a
worsening of IR with increasing apnoea/hypopnoea index
(AHI) [54]. However, other studies failed to demonstrate an
independent effect of AHI owing to the major impact of obesity
[64, 65, 80]. Excessive daytime sleepiness (EDS) may also be of

importance, as underlined by the recent findings that
hyperglycaemia and IR only occurred in OSA patients
presenting with EDS [77].

It may be concluded, in agreement with TASALI and IP [9], that
despite the abundance of cross-sectional evidence for the link
between OSA and abnormal glucose control, further well-
designed longitudinal and interventional studies are clearly
needed to address the direction of causality.

OSA and the metabolic syndrome
According to clinical and epidemiological studies, the cluster
of risk factors known as the MetS is associated with increased
risk for diabetes, cardiovascular events and mortality in the
general population [12]. Although the definition of the MetS is
still under debate [81–83], IR is considered as the major
metabolic abnormality, and is usually associated with an
increased amount of visceral (dysfunctional) fat [84]. The
World Health Organization definition of the MetS is based on
the direct measurement of IR (table 1) [50]. Another definition
(National Cholesterol Education Program–Adult Treatment
Panel (ATP) III) is based on simple clinical findings (abdominal
obesity, dyslipidaemia, hypertension and increased plasma
glucose), and is easily applicable as it does not require tests to
be performed in a specialised environment (table 1) [49].
Finally, the definition proposed by the International Diabetes
Federation shares many features with the ATP III definition,
but defines the cut-offs for waist circumference according to
ethnicity [85], thus accounting for differences in body habitus
between Caucasian and Asian populations. All these defini-
tions should be considered as ‘‘in progress’’ and subject to

TABLE 1 Current definitions used in clinical studies

Fasting plasma glucose [48]

Normal: ,100 mg?dL-1 (5.6 mmol?L-1)

Impaired fasting glucose: 100–125 mg?dL-1 (5.6–6.9 mmol?L-1)

Provisional diagnosis of diabetes: o126 mg?dL-1 (7 mmol?L-1)

Oral glucose tolerance test (75 g of glucose) [48]

2-h post-load glucose

Normal glucose tolerance: ,140 mg?dL-1 (7.8 mmol?L-1)

Impaired glucose tolerance: 140–199 mg?dL-1 (7.8–11.1 mmol?L-1)

Provisional diagnosis of diabetes: o200 mg?dL-1 (11.1 mmol?L-1)

Occult diabetes [48]

Fasting plasma glucose o126 mg?dL-1

Glucose o200 mg?dL-1 2-h post-oral glucose tolerance test challenge

Metabolic syndrome: Adult Treatment Panel III definition [49]

Any three or more of the following criteria:

1) Waist circumference .102 cm in males and .88 cm in females

2) Serum triglycerides o1.7 mmol?L-1

3) Blood pressure o130/85 mmHg

4) High-density lipoprotein cholesterol ,1.0 mmol?L-1 in males and ,1.3 mmol?L-1 in females

5) Serum glucose o6.1 mmol?L-1 (o5.6 mmol?L-1 may be applicable)

Metabolic syndrome: World Health Organization definition [50]

Diabetes, impaired fasting glucose, impaired glucose tolerance or insulin resistance (assessed by clamp studies) and at least two of the following criteria:

1) Waist-to-hip ratio .0.90 in males or .0.85 in females

2) Serum triglycerides o1.7 mmol?L-1 or high-density lipoprotein cholesterol ,0.9 mmol?L-1 in males and ,1.0 mmol?L-1 in females

3) Blood pressure o140/90 mmHg

4) Urinary albumin excretion rate .20 mg?min-1 or albumin-to-creatinine ratio o30 mg?g-1
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TABLE 2 Epidemiological studies on insulin resistance (IR) and metabolic syndrome (MetS) in sleep disordered breathing (SDB)

First author [ref.] Sample Age

yrs

FBG

mg?dL-1

Insulinemia/

HOMA

BMI

kg?m-2

Waist-to-hip

ratio

Comments

GRUNSTEIN [51] Suspected OSA

(n5864):

Low risk 43%

High risk 57%

Cross-sectional study. Higher FBG, SBP and

DBP in obese subjects at high risk for OSAS

ELMASRY [52] General population

(n52668 males):

Longitudinal study (10-yr follow-up). Incidence

of diabetes mostly explained by obesity, but

snoring seems to cause additional riskSnorers (14.7%) 47 25.5

Nonsnorers (83.5%) 45 24.2

ELMASRY [53] 116 hypertensive

males:

Cross-sectional study. Mean AHI510.

Obesity and OSA may cause diabetes; OSA

could affect FBG and plasma insulin

independent of obesity

Normal FBG (n583) 61¡10 86¡7 10¡6 27 1

IGT (n58) 55¡8 102¡4 12¡7 30 0.99

Diabetes (n525) 61¡8 134¡41 16¡7 29 1.02

PUNJABI [54] 150 males from the

general population:

HOMA Cross-sectional study. AHI correlated with

BMI but not with waist-to-hip ratio or body

fat (%). IGT and IR associated with OSA

severity independent of obesity; metabolic

alterations appear before OSA symptoms

AHI ,5 (n557) 58¡9 99¡13 62¡39 30¡3 0.96

AHI 5–15 (n539) 59¡8 104¡22 71¡50 30¡3 1.00

AHI 15–30 (n537) 59¡8 102¡15 76¡44 31¡3 0.98

AHI .30 (n517) 59¡8 111¡25 92¡43 33¡2 1.00

AL-DELAIMY [55] Nurses’ Health Study

(n569852):

Longitudinal study (10-yr follow-up). Snoring

associated with high risk for diabetes,

independent of degree of obesityNonsnorers 26% 50 24 0.77

Occasional snorers

65%

53 25 0.78

Habitual snorers 9% 53 28 0.81

PUNJABI [16] Sleep Heart Health

Study: (n52656)

68 27.4 Cross-sectional study. FBG and IGT

associated with OSA; hypoxaemia during

sleep rather than AHI predicted IGT

REICHMUTH [56] General population

(Wisconsin Sleep

Cohort, n51387):

Cross sectional and longitudinal study.

High prevalence of diabetes in subjects

with OSA, but causal relationship unclear

(significance lost after adjusting for

body habitus)

Non-OSA 77% 48 30# 28

Mild OSA 14% 52 11# 32

Moderate-to-severe

OSA 9%

52 17# 34

SHIN [57] General population

(n52719):

Trend to increased risk for IGT and IR in

snorers compared with nonsnorers

Nonsnorers 86% 51 88.3 6.5 23

Snorers 14% 51 88.6 6.4 24

LAM [58] General population

(n51612 question-

naires, n5255 PSG):

Cross-sectional study. OSA associated with

several components of the MetS including IR

Non-OSA (n5160) 42 91.3 24

OSA (n595) 45 98.5 27

JOO [59] General population

(Korean Health and

Genome Study,

n56981):

Cross-sectional study. Snoring associated

with increased risk for elevated HbA1c in

males before age 50 yrs and in

premenopausal females

Nonsnorers (n51224

males/n51706

females)

53/51 87/86 5.5/5.5" 23/23

Simple snoring

(n51622 males/

n51574 females)

51/52 89/86 5.6/5.6" 24/24

Habitual snoring

(n5516 males/

n5339 females)

51/56 89/87 5.6/5.7" 24/24
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change based on the evidence provided by current and future
studies.

The MetS can be explained by viewing abdominal adipose tissue
as an endocrine organ (see below), releasing into the circulation
excess harmful free fatty acids (FFA), angiotensin II and
adipokines. Increased blood FFA inhibits the uptake of glucose
by muscle. Because excess FFA and angiotensin II damage
the pancreas, insulin release is not sufficient to counteract
hyperglyacemia, resulting in IR [86]. The most prevalent
form of this group of metabolic abnormalities linked to IR is
found in patients with abdominal obesity, especially with an
excess of intra-abdominal or visceral adipose tissue [87]. It
has been suggested that visceral obesity may represent a
clinical intermediate phenotype, reflecting the relative inabil-
ity of subcutaneous adipose tissue to clear and store extra
energy resulting from dietary triglycerides, thus leading to
fat deposition in visceral adipose depots, skeletal muscle,
liver, heart, etc. Thus, visceral obesity may be both a marker
of a dysmetabolic state and a cause of the MetS [87].

MetS is often found in OSAS patients (table 5) [10, 58, 65, 74,
75, 88–92]. However, the relative role played by OSA and
obesity in the pathogenesis of MetS remains uncertain.
Prevalence of the MetS is higher in patients with OSAS than
in the European general population (15–20%) or in obese
subjects without OSAS [81]. In subjects with SDB, prevalence
rates ranged from 19% in Korean snorers [57] to 87% in OSA
patients from the UK [10]. The risk of developing the MetS
increased with severity of SDB in Western as well as Eastern
populations [17, 58, 69, 73, 88–91, 93]. The studies published to
date agree on the estimate of a five-fold (or higher) risk of MetS
in OSAS patients compared with controls.

Most studies found a significant association between MetS
and AHI, while the association with intermittent hypoxaemia
was weak or absent. This result is at variance with the data
obtained in animal models, which suggest a role of inter-
mittent hypoxaemia in metabolic alterations (see below). In
OSAS patients, apnoea or desaturation indexes showed
stronger correlation with the amount of visceral fat than with

First author [ref.] Sample Age

yrs

FBG

mg?dL-1

Insulinemia/

HOMA

BMI

kg?m-2

Waist-to-hip

ratio

Comments

ONAT [60] General population

(n51946):

MetS +ve simi-

larly distributed

among OSA +ve

and OSA -ve

males

increased preva-

lence of MetS in

OSA +ve than

OSA –ve females

Cross-sectional study. MetS in males with

OSA explained by abdominal obesity, IR not

significant. MetS in females with OSA

associated with smoking and CHD

Males (n5944) 54

Females (n5102)

SEICEAN [61] Sleep Heart Health

Study (n52588):

FBG/OGTT Cross-sectional study. Magnitude of

association of SDB with alterations of

glucose metabolism similar in nonobese

and overweight/obese subjects

Non-overweight con-

trols (n5643)

66 93/116 23

Non-overweight OSA

(n5209)

75 92/119 23

Overweight/obese

controls (n5873)

66 96/128 28

Overweight/obese

OSA (n51036)

68 100/136 30

THEORELL-

HAGLOW [62]

Females from

Uppsala (Sweden)

general population

(n57051 question-

naires, n5400 PSG):

OSA independently associated with

decreased insulin sensitivity in females

Controls (n5134) 43 5.2 mmol?L-1 6.4 25 0.83

Mild OSA (n5131) 51 5.5 mmol?L-1 7.5 26 0.85

Moderate (n593) 55 5.5 mmol?L-1 8.8 28 0.87

Severe (n542) 58 6.1 mmol?L-1 10.1 31 0.9

Data are presented as mean¡ SD, unless otherwise stated. FBG: fasting blood glucose; HOMA: homeostasis model assessment; BMI: body mass index; OSA:

obstructive sleep apnoea; IGT: impaired glucose tolerance; AHI: apnoea/hypopnoea index; PSG: polysomnogram; OGTT: oral glucose tolerance test; SBP: systolic

blood pressure; DBP: diastolic blood pressure; OSAS: OSA syndrome; Hb: haemoglobinCHD: coronary heart disease; +ve: positive; -ve: negative. #: diabetes (%);
": HbA1c (% + subjects).

TABLE 2 Continued
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global obesity indexes, such as BMI [69], leading some authors
to propose that OSAS should be considered as a component of
the MetS [94]. However, the pathogenic mechanisms possibly
leading from metabolic alterations to OSAS are still unclear.
This is also illustrated by the fact that not all OSAS patients
are obese, and not all obese subjects develop OSAS. Further
studies with careful assessment of the amount and distribu-
tion of body fat are needed to better understand the
pathophysiology of adipose tissue and its interaction with
OSAS, taking into account the current progress in basic and
clinical research on obesity.

Effects of OSA treatment
The effects of CPAP treatment on glucose metabolism have
been evaluated in both nondiabetic and diabetic patients, as
summarised in table 6 [78, 93, 95–109], and may provide some
clues as to the relative role of OSA and obesity in the
pathogenesis of metabolic alterations. Until 2003, there were
very few clear results owing to methodological issues and
various confounders [92]. In 2004, HARSCH et al. [99] reported
that CPAP treatment for 2 days rapidly improved the ISI in
nondiabetic patients and that the positive effects of CPAP
persisted after 3 months of treatment. Conversely, ISI
improved only slightly and after prolonged treatment in obese
patients (BMI .30 kg?m-2), suggesting that in the latter group
insulin sensitivity is primarily determined by obesity and, to a
lesser extent, by sleep apnoea [99]. In nondiabetic patients,
increased blood glucose was found after 1 night of CPAP
treatment, with a tendency to higher fasting insulin and
resistance to insulin (i.e. homeostasis model assessment
(HOMA)-IR) after CPAP [101]. Such an increase in blood
glucose might be related to CPAP-associated increase in
growth hormone [95, 97], leading to an increase in plasmatic
FFA owing to growth hormone lipolytic effects and thus to
reduced glucose utilisation by skeletal muscles.

CPAP treatment does not greatly affect the metabolic status of
obese OSA patients. A randomised, placebo-controlled,
blinded crossover trial comparing cardiovascular and meta-
bolic outcomes after 6 weeks of therapeutic or sham CPAP
reported no change in glucose, lipids, IR or the proportion of
patients with MetS in obese males, while positive effects of
treatment on blood pressure and EDS were clearly present in
the therapeutic CPAP group [105]. Whether EDS is also a
critical determinant of the response to CPAP treatment, as
recently reported [77], needs further evaluation in randomised
control trials of large samples.

The limited duration of randomised controlled studies in OSA
patients could, at least partly, account for the nonsignificant
effects of CPAP treatment on glucose metabolism found in
most studies. An observational study in a highly selected
sample of OSAS patients found improved insulin sensitivity in
patients with good compliance to CPAP after 2.9 yrs of
treatment [108]. Similarly, the Swedish Obesity Study reported
a three-fold incidence of diabetes and hypertriglyceridaemia in
patients with witnessed apnoeas compared to subjects with no
OSA at 2 yrs follow-up [110]. Two studies reported that
visceral fat decreased after CPAP treatment [103, 111] while a
more recent study [93] found no change in IR or visceral fat
after CPAP for 3 months. Therefore, large longitudinal studies
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focusing on different aspects of this complex topic are needed
to assess the potential long-term effect of OSA treatment.

In type 2 diabetic patients with OSAS, several studies have
assessed the impact of CPAP treatment on glycaemic control.
Recent observational studies using continuous glucose monitor-
ing techniques have reported positive effects of CPAP on
glycaemic control, already present during the first night of
treatment, as variability of glycaemic values decreased compared
with baseline conditions [107]. DAWSON [109] found decreased
glucose levels and variability without significant changes in
haemoglobin (Hb)A1c levels. Conversely, BABU et al. [102]
reported the results of 72-h continuous monitoring of interstitial
glucose and measurements of HbA1c levels in 25 patients before
and after 3 months of CPAP. Post-prandial glucose values were
significantly reduced 1 h after treatment, and HbA1c level
decreased in patients with abnormally high baseline HbA1c
(.7%). Furthermore, in subjects who used CPAP for .4 h?day-1,
the reduction in HbA1c level was significantly correlated with
CPAP use [102]. A retrospective study also confirmed a slight
reduction in HbA1c in diabetic patients with OSA treated with
CPAP [100]. However, obesity was likely to be a major
confounding factor, since a randomised controlled trial compar-
ing therapeutic (n520) or placebo CPAP (n522) for 3 months
found no difference in terms of glycaemic control or IR in these
patients [105]. In summary, a huge impact of obesity is also
present in type 2 diabetic patients, which may offset the impact of
CPAP [112, 113].

The effects of CPAP treatment on the MetS are controversial, as
recently summarised in two reviews [9, 114]. A recent
observational study in patients with severe OSAS reported
decreased blood pressure and plasma cholesterol and
improved HOMA index after 8 weeks of CPAP treatment in
patients with good compliance to therapy; the estimated effect
of CPAP over 10 yrs was a decrease in cardiovascular risk
from 18.8% to 13.9% [106]. However, a randomised controlled
study in patients with moderate-to-severe OSAS showed that
IR or other MetS variables were unaffected after 6 weeks of
effective CPAP [104]. Moreover, some studies suggested
positive effects on plasma lipids after CPAP in patients
showing a good compliance to treatment [106, 115, 116], while
other studies found no effect of OSA treatment on plasma
cholesterol or triglycerides [93, 104].

Other markers of glucose metabolism have been assessed in
OSA patients, such as insulin growth factor (IGF)-1 and
adiponectin. A high IGF-1 concentration is predictive of
decreased risk of type 2 diabetes and impaired glucose
tolerance [117, 118], whereas low IGF-1 concentrations were
found to be associated with increased risk of cardiovascular
disease [119]. The complex interactions between IGF-1, its
binding proteins and insulin sensitivity promote IGF-1 as an
important regulator of glucose homeostasis. While fasting
insulin and blood glucose are subject to short-term changes,
IGF-1 is a more stable variable subject to long-term regulation.
In a population-based cohort, IGF-1 significantly increased after
CPAP treatment [117]. However, in OSA patients’ improve-
ment in IGF-1 after CPAP was reported to occur only in patients
presenting with EDS [76]. Adiponectin is known to counteract
the effects of IR [120], and the effects of OSA treatment on
adiponectin have been assessed with controversial results.
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P. LÉVY ET AL. SERIES: OBSTRUCTIVE SLEEP APNOEA/HYPOPNOEA SYNDROME

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 34 NUMBER 1 251



Some studies found increased adiponectin after 1 night [121] or
2 weeks [122] of CPAP treatment, while other studies found no
change in adiponectin levels after OSA treatment for 1 night
[123] or 1–3 months [93, 124, 125].

It is possible that OSA treatment may positively affect only
some MetS components, rather than affecting all of them [110,
115]. The available results need further confirmation. There is a
strong need for controlled prospective studies, to evaluate

TABLE 6 Clinical studies on glycaemic control and insulin resistance (IR) in obstructive sleep apnoea syndrome (OSAS)
patients before and after continuous positive airway pressure (CPAP) treatment

First author [ref.] Sample Mean age yrs Measurement Mean BMI kg?m-2 Comments

SAINI [95] OSAS (n58) 43 FBG and insulinaemia 33 No change after 1 night of

continuous CPAP

DAVIES [78] Males (n566): 47 Insulinaemia No change after CPAP for 4 months

No OSA (n533) 31

Snorers (n518) 28

OSA (n515) 31

BROOKS [96] Male patients with OSA: Hyperinsulinaemic

euglycaemic clamp

IR improved after CPAP for 4 months

Mild (n59) 51 42

Moderate (n513) 52 42

Severe (n59) 46 41

COOPER [97] OSA patients (n56) 52 FBG, HbA1c 38 No change after 2 nights of

continuous CPAP

SAARELAINEN [98] OSA patients (n57) 34–60 Insulin suppression test 34 IR unchanged after CPAP for 3 months

HARSCH [99] OSA patients (n540) 54 Hyperinsulinaemic

euglycaemic clamp

33 IR improved after 2 days of CPAP in

nonobese patients, and after 3 months

in obese patients

HASSABALLA [100] Diabetic OSA patients

(n538)

53 HbA1c 42 Decreased after .4 months of CPAP

CZUPRYNIAK [101] Nondiabetic OSA patients

(n59)

53 Continuous glucose

monitoring system, FBG,

OGTT

35 Worsened glucose metabolism after

CPAP for 1 night

BABU [102] Diabetic OSA patients

(n524):

Continuous glucose

monitoring for 72 h, HbA1c

IR improved after CPAP for 3 months,

especially if good compliance and

baseline values out of controlCPAP ,4 h (n512) 52 45

CPAP .4 h (n512) 49 41

TRENELL [103] OSA patients (n529): FBG, fasting insulin, HOMA Unchanged IR after CPAP for 12 weeks

Regular CPAP (n519) 49 36

Irregular CPAP (n510) 51 32

COUGHLIN [104] Newly diagnosed OSA

(n534)

49 FBG, HOMA index 37 No change after CPAP for 6 weeks (RCT)

WEST [105] Diabetic OSA patients

(n542):

HOMA index, HbA1c No change after CPAP for 3 months (RCT)

Placebo (n522) 55 37

CPAP (n520) 58 37

DORKOVA [106] Severe OSA patients with

MetS (n532)

54 HOMA 35 IR improved after CPAP for 8 weeks in

patients using CPAP for .4 h?night-1

PALLAYOVA [107] Diabetic OSA patients

(n514)

54 Continuous glucose

monitoring, FBG, HbA1c

37 Decreased nocturnal glucose variability

during CPAP application

SCHAHIN [108] 9 OSA patients out of 31

previously studied

59 Hyperinsulinaemic

euglycaemic clamp

31 IR improved after CPAP for 2.9 yrs, but

highly selected sample

VGONTZAS [93] OSA patients (n516) 48 FBG, insulinaemia 37 No change after CPAP for 3 months

Obese controls (n515) 45 HOMA 35

Nonobese controls (n513) 41 27

DAWSON [109] Diabetic OSA patients

(n520)

60 Continuous glucose

monitoring system, HbA1c

40 Decreased nocturnal glucose variability

during CPAP application,

unchanged HbA1c

BMI: body mass index; OSA: obstructive sleep apnoea; MetS: metabolic syndrome; FBG: fasting blood glucose; Hb: haemoglobin; OGTT: oral glucose tolerance test;

HOMA: homeostasis model assessment; RCT: randomised controlled trial.
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whether some patient subgroups might especially benefit from
the effects of CPAP treatment on metabolic variables [14].

OSA and glucose metabolism in paediatrics
Children and adolescents represent a very important clinical
population since epidemic obesity in paediatrics is a major
health concern [125, 126] and is associated with high MetS
prevalence [127], although the real relevance of the MetS in
adolescents is currently under discussion [128]. In addition,
children classically represent a good clinical model for examin-
ing the relationship between SDB and glucose metabolism with
limited coexistent comorbidity, even though differences between
adult and paediatric OSA may have become smaller due to the
current high prevalence of obesity at a young age [129]. The
causal role of SDB in paediatric metabolic abnormalities is
currently unclear, as indicated in a recent review [130].

In the general population, SDB in children seems to be
associated with MetS [131]. In the Cleveland Cohort [131],
after adjusting for age, race, sex and preterm status, children
with SDB had a 6.49 increased odds of MetS compared with
children without SDB [131]. Approximately 25% of the sample
was overweight and 19% had MetS. In clinical samples of
obese children, SDB was found to correlate with fasting insulin
levels independent of BMI [132, 133]. This has been challenged
among children with suspected SDB, in whom IR and
dyslipidaemia seem to be determined primarily by the degree
of body adiposity rather than by the severity of SDB [134, 135].
In nonobese children, severity of SDB was not a significant
predictor of fasting insulin or HOMA index values [136].

As for adipokine levels in children with SDB, obesity appeared as
the primary determinant although SDB and associated hypox-
aemia may contribute to elevated leptin levels [137]. In a recent
study conducted in obese and nonobese children, GOZAL et al.
[138] showed that SDB was associated with altered lipid
homeostasis and systemic inflammation. In the presence of
obesity, SDB also affected glucose metabolism through reduction
in insulin sensitivity, independent of obesity [138]. Therefore, in
obese children there could be an interaction between increased
adiposity and SDB to promote and amplify IR.

Few data have been obtained in children on the effects of
treatment for OSA on metabolic abnormalities. A small study
reported a slight improvement in plasma high-density lipo-
protein cholesterol after adenotonsillectomy, but no major
changes in insulin level [135]. Leptin and sympathetic markers
were found to be increased at baseline in children with SDB
compared to simple snorers, and decreased after CPAP
treatment for 3 months [139]. However, IR was unaffected by
treatment [139]. Also, no change was shown in insulin level or
HOMA index compared to baseline measurements in a sample
of Greek children after adenotonsillectomy [140].

In summary, the field of SDB and its metabolic consequences
together with its interaction with obesity is rapidly developing,
but uncertainties remain significant as highlighted by recent
reviews and editorials [141–143].

MECHANISMS AND EXPERIMENTAL DATA
Role of adipose tissue and visceral obesity
White adipose tissue is considered to be a key endocrine and
secretory organ that releases a large number of adipokines

with a major link to inflammation and immunity. The
paradigm shift in adipose tissue biology was initiated in 1994
by the discovery of leptin [144]. Subsequently, a growing
number of proteins, peptides and other factors released from
white adipocytes, collectively termed adipocytokines, have
been described [145]. Most of these adipocytokines are linked
to inflammation and their production is increased in obesity.
To date, only adiponectin is known to exert anti-inflammatory
and anti-diabetic activity, and is reduced in obesity and type2
diabetes [146, 147].

Human obesity is characterised by increased rather than low
leptin production. In OSAS patients, several studies reported
increased leptin levels compared to weight-matched controls
[69, 148–152], which correlated with OSA severity [148, 150,
151] and decreased after CPAP [111, 148, 153, 154]. Similar
results were recently reported in paediatric OSA [139].
Therefore, OSA may exert an independent effect on leptin
levels, causing leptin resistance, possibly through hypoxia,
which acts by increasing leptin gene transcription [155].

Adipose tissue inflammation is thought to play a key role in
the development of MetS, type 2 diabetes and cardiovascular
disease [156]. In 2004, TRAYHURN and WOOD [157] suggested
that adipose tissue inflammation may represent a specific
response to relative hypoxia in clusters of adipocytes that
become distant from the vasculature as cell size increases. It
has since been demonstrated that hypoxia occurs in adipose
tissue of obese mouse models and triggers expression of
inflammatory adipokines [158].

Hypoxia-induced factor (HIF)-1 plays a key role in the
response to hypoxia in most tissues. Transcription factors
such as NF-kB and CREB are downstream targets of HIF-1. The
number of hypoxia-sensitive genes is continuously growing,
and to date .70 genes have been described as targets of HIF-1.
These genes include proteins involved in angiogenesis, cell
proliferation, apoptosis and energy metabolism [159]. Hypoxia
may increase expression and secretion of a variety of
inflammation-related adipocytokines such as IL-6, macrophage
migration inhibitory factor and vascular endothelial growth
factor. Therefore, hypoxia is likely to affect adipocyte function
and promote adipose tissue inflammation. This may play a
critical role in obesity-related disorders and may trigger the
development of peripheral resistance to insulin and thus
promote the development of type 2 diabetes and the MetS. The
relationship between HIF-1 and inflammation has been
discussed in detail in another article of this series [160].

Analysis of secretory products from primary human adipo-
cytes revealed that these cells release classical adipocytokines
such as TNF-a, IL-6, leptin, and adiponectin, as well as newly
discovered adipocytokines i.e. tissue inhibitor of
metalloproteinases-1 and monocyte chemotactic protein
(MCP)-1 [161]. MCP-1 was first described as a secretory
product of monocytes and endothelial cells with a prominent
role in arteriosclerosis but it is also associated with the obese
state. MCP-1 exhibits IR-inducing capability in adipocytes and
myocytes [162].

Increased expression and secretion of adipokines in obesity may
be a marker of low-grade chronic inflammation in adipose tissue.
Protein kinase C and IkB kinase (IKK) are two kinases known to
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be involved in the inflammatory processes underlying IR. IKK
influences insulin sensitivity, especially in skeletal muscle, by
inhibiting insulin signalling by insulin receptor substrate-1
phopshorylation on serine residues and by activating NF-kB. In
turn, NF-kB regulates production of pro-inflammatory cytokines
such as TNF-a and IL-6 [163], and generates both hepatic and
systemic inflammation as well as IR [164].

In summary, the adipose tissue in obesity shows abnormal
function and evidence of hypoxia and inflammation. This
might be worsened by the occurrence of apnoeas during sleep,
with further hypoxia and inflammation. The relative role of
obesity and OSA in the pathogenesis of metabolic alterations is
still unclear and is being intensively studied both in clinical
and experimental models.

OSA, oxidative stress, inflammation and adipose tissue
OSA cardiovascular and metabolic consequences are now
viewed as a component of a systemic disease resulting from
oxidative stress [165], and systemic and vascular inflammation
[166–172]. Inflammation appears to be mostly confined to the
vascular compartment, while systemic inflammation is often
absent or mild. This may account for the variable level of C-
reactive protein, which is often found not to be elevated in
OSA patients without comorbidities [173, 174].

Obesity associated with OSA appears to be the strongest
determinant of systemic inflammation [175]. Adipose tissue
inflammation may play a critical role in OSA-associated
morbidity [176], with peri-vascular adipose tissue especially
contributing to the release of cytokines, TNF-a, pro-athero-
genic chemokines, and pro-angiogenic peptides [177, 178]
(fig. 1). Whether these factors contribute directly to alterations
in the function and structure of the vascular wall and the
development of atherosclerosis and cardiovascular complica-
tions in OSA remains to be studied.

Intermittent hypoxia
Intermittent hypoxia (IH) is considered the peculiar patho-
physiological aspect of OSA and has been extensively studied
in lean and obese rodent models. Recent reviews have

summarised experimental and clinical data linking IH to
cardiovascular and metabolic alterations [178]. Metabolic and
atherosclerotic changes have been shown in mice exposed to
chronic IH [179–183].

In the chronic IH model (35 days) in mice, both systemic and
localised inflammation of small and large arteries occurred,
with evidence of peri-adventitial localisation of T-cells infiltra-
tion highly suggestive of a critical role of the peri-adventitial
fat in the IH-related vascular inflammation (C. Arnaud,
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FIGURE 1. Effects of hypoxia on adipokines and their interactions with insulin

metabolism and endothelial function. The main factors involved are leptin,

angiotensinogen (Ang), resistin, C-reactive protein (CRP), tumour necrosis factor

(TNF)-a and plasminogen activator inhibitor (PAI)-1. Leptin promotes (red arrows)

insulin resistance and endothelial dysfunction, whereas adiponectin is protective

(blue arrows). Obesity, a state of leptin resistance and endothelial dysfunction, also

exhibits hypoxia, which is known to activate (red arrow) promoting adipokines and

inhibit (blue arrows) adiponectin production. In OSA, obesity and night-time hypoxia

might act synergistically in producing inflammation at the systemic and vascular

level, and in promoting metabolic and cardiovascular dysfunction. HDL: high-

density lipoprotein; OxLDL: oxidised low-density lipoprotein; CD40L: CD40 ligand;

VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion

molecule-1; +: activation/promotion; -: inhibition/protection. Modified from [178].

TABLE 7 Summary data on metabolic variables in studies on the effects of intermittent hypoxia (IH) in lean and obese mice

IH exposure Fasting blood

glucose

Fasting insulin Insulin sensitivity-

fasting (HOMA index)

Glucose tolerance or euglycaemic

hyperinsulinaemic clamp#

Plasma TG/TC/PL Liver content TG/TC/

PL

Lean mice

Acute q185 5185 Q185 Q185

Short term Q189 5189 q189 q189 q/q/q179 q/5/5179

Long term q189 Q188 Q189 q/q192 Q/Q/Q192

Ob/Ob mice

Short term 5189 qqq189 QQQ189 QQQ189 5/5/5179 5/5/5179

Long term 5189 qq189 QQ189 QQ189 5/5/5189 q/5/q189

High-fat fed mice

Long term Q191 Q191 5191 5/5/NA191 5/q/NA191

The arrows indicate the direction of change (increase or decrease) of each parameter in mice exposed to IH. Numbers indicate reference. HOMA: homeostasis model

assessment; TG: triglyceride; TC: total cholesterol; PL: phospholipids; Ob: genetically obese; NA: not available. q: increase; Q: decrease; 5: no change. #: glucose load

by intraperitoneal glucose tolerance test or euglycaemic hyperinsulinaemic clamp.
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University of Grenoble, Grenoble, France; personal commu-
nication). Indeed, this does not rule out haemodynamic factors
as, in another study in mice [180], platelet endothelial cell
adhesion molecule-1, a marker of the endothelial cell, was
decreased at both the heart and aorta level with a specific
gradient, without loss of endothelial cells, possibly indicating a
role for shear forces applied to the heart and aorta. Thus,
vascular remodelling may result from either haemodynamic or
inflammatory changes, or both. From these studies and others
already published [166, 179, 183–185], strong interactions are
likely to occur in response to chronic IH between haemody-
namic alterations, systemic inflammation and metabolic
changes, and modulated by genetic background [178, 182].
Inflammation may largely contribute to glucose homeostasis
dysregulation.

Indeed, from a metabolic perspective, several pieces of
evidence support a role for IH in the metabolic alterations
seen in OSA. Exposure of lean mice (C57BL/6J) to IH for
5 days increased serum cholesterol and phospholipids levels,
up-regulated triglycerides and phospholipid biosynthesis, and
inhibited cholesterol uptake in the liver [179]. These effects
may be mediated through HIF-1 activation for triglycerides
and the post-transcriptional regulation of lipid biosynthesis
(sterol regulatory element binding protein-1) but not for serum
cholesterol levels [186].

IH may result in acute IR in otherwise lean, healthy animals,
and the response is associated with decreased glucose
utilisation of oxidative muscle fibres, independent of auto-
nomic nervous system activation [185]. The magnitude of
metabolic alterations may also depend on the severity of IH
[184]. However, in contrast to the persistent effects of chronic
IH on sympathetic activity and blood pressure, the effects of IH
on glucose homeostasis appear to be limited to the periods of
hypoxic exposure [187]. Moreover, combining IH exposure and
glucose infusion amplified the alteration of blood glucose
diurnal rhythm and led to high rates of apoptosis in b-cells
[187]. The overall effects of IH on glucose homeostasis are
summarised in table 7 [179, 185, 188–192], and appear highly
complex, in part, because IH causes loss of weight in lean
animals, which counteracts IR. However, these data support
the findings in humans suggesting a synergistic effect of
increased adiposity and SDB in promoting metabolic dysfunc-
tion. Finally, it should be reminded that sleep fragmentation
and intermittent hypoxia may also interact in modulating
glucose homeostasis in animal models as well as in OSA, but
the effects of sleep fragmentation are extremely difficult to
study, even in animal models [182].

A recent area of investigation is the potential role of IH as a
‘‘second hit’’ stimulus for the transition from hepatic steatosis
to nonalcoholic steatohepatitis (NASH) [190–192]. Recent
studies in mice exposed to chronic IH would support this
possibility, since animals fed a regular diet developed mild
liver injury, while animals fed a high-fat diet showed evidence
of inflammation and fibrosis of the liver [191]. In both groups,
there was evidence of hepatic oxidative stress. NASH is likely
to be associated with hepatic IR and this may further
contribute to glucose homeostasis dysregulation. This topic is
still largely unexplored in the clinical context, since few studies
to date have examined hepatic function in OSA patients. The

available data suggest that at least some patients, both adults
and children, may show evidence of hepatic dysfunction
correlated with the severity of nocturnal IH [193, 194].

CONCLUSIONS
Alterations in sleep quantity or quality may affect glucose
metabolism. However, although cross-sectional studies from
around the world show a consistent increased risk of obesity
among short sleepers in children and adults, large prospective
studies are needed. In addition, in SDB, despite the abundance
of cross-sectional evidence for the link between OSA and
abnormal glucose control, further well-designed longitudinal
and interventional studies are clearly needed to address the
direction of causality. The available evidence also suggests that
CPAP has little or no effect on the metabolic status of obese
subjects, presumably owing to the major impact of visceral
obesity. However, recent data obtained in diabetic OSA
patients by using the technique of continuous monitoring
suggest that CPAP treatment may improve glycaemic control.
Thus, the synergistic negative effects of obesity and SDB
represent a major research challenge, as shown by the complex
picture emerging from studies in animal models. The interac-
tion between hypoxia and metabolism possibly involves stress
activation, oxygen radical production, and multiple cellular
pathways (NF-kB, HIF and apoptosis) and cell types (inflam-
matory cells, vascular endothelium, adipocytes). There is a
potential role for adipose tissue inflammation both regarding
vascular remodelling and metabolic dysfunction. Clinical and
translational research is urgently needed in this field.
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