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ABSTRACT The United Nations Millennium Development Goal of reversing the global spread of
tuberculosis by 2015 has been offset by the rampant re-emergence of drug-resistant tuberculosis, in
particular fluoroquinolone-resistant multidrug-resistant and extensively drug-resistant tuberculosis. After
decades of quiescence in the development of antituberculosis medications, bedaquiline and delamanid
have been conditionally approved for the treatment of drug-resistant tuberculosis, while several other novel
compounds (AZD5847, PA-824, SQ109 and sutezolid) have been evaluated in phase II clinical trials.
Before novel drugs can find their place in the battle against drug-resistant tuberculosis, linezolid has been
compassionately used with success in the treatment of fluoroquinolone-resistant multidrug-resistant
tuberculosis. This review largely discusses six novel drugs that have been evaluated in phase II and III
clinical trials, with focus on the clinical evidence for efficacy and safety, potential drug interactions, and
prospect for using multiple novel drugs in new regimens.
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Introduction

Despite the advent of rifampicin and pyrazinamide almost half a century ago, tuberculosis (TB) has
remained one of the leading causes of death worldwide [1-6]. Compared with HIV infection, there has been
complacency and a lack of interest in TB drug development until the turn of the century. Notwithstanding
the recognition of the standard 6-month regimen for drug-susceptible TB as “short-course” [6-11],
6 months is by no means short in comparison with most other bacterial diseases [12].

Not unexpectedly, the United Nations Millennium Development Goal of reversing the global spread of TB
by 2015 has been offset by the rampant emergence of multidrug-resistant (MDR) and extensively
drug-resistant (XDR) strains of Mycobacterium tuberculosis (fig. 1) [12-15]. Primarily occurring as a result
of inadequate treatment, particularly in settings with low cure rates and high rates of default and relapse,
MDR-TB refers to TB with bacillary resistance to both isoniazid and rifampicin, and XDR-TB, a subgroup
of MDR-TB with additional resistance to any fluoroquinolone and at least one second-line injectable
agent. In some areas of Eastern Europe, MDR-TB was found in 20% to 45% of all strains of
M. tuberculosis isolated from patients [15].

MDR-TB poses problems for the global control of TB. Using second-line treatment regimens in
programme settings, the overall cure rate is approximately 60% for MDR-TB, and 40% for XDR-TB [16].
Corresponding rates in the current surveillance data from Europe were 32% and 19% of patients,
respectively, which are not better than spontaneous cure rates of TB [17]. Routine use of the World Health
Organization (WHO) category II regimen for programmatic management of previously treated patients
can fuel the spread of MDR-TB [18, 19]. Although second-line treatment-naive patients with MDR-TB,
often caused by fluoroquinolone-susceptible strains of M. tuberculosis, may be successfully treated within
9 to 12 months using second-line regimens that contain high-dose later-generation fluoroquinolone [20],
the WHO for many years recommended treatment for 18 months past culture conversion [14] with the
latest update in 2011 recommending a total treatment duration of at least 20 months for MDR-TB [21].
Given the need to treat MDR-TB with expensive second-line drugs for a prolonged period [22],
drug-resistant TB has drained invaluable resources, thereby offsetting global TB control efforts and
threatening to subvert the WHO Stop TB Strategy by diverting attention and resources from the
management of drug-susceptible cases, which still represent the main patient group worldwide [23].

Fluoroquinolone-resistant MDR-TB, including XDR-TB, is particularly difficult to treat. As
later-generation fluoroquinolones (such as levofloxacin, moxifloxacin, gatifloxacin) may be efficacious
against ofloxacin-resistant strains [24], WHO has recommended that later-generation fluoroquinolones be
used in the treatment of XDR-TB [14]. A systematic review with meta-analysis of observational studies has
corroborated this recommendation by demonstrating that later-generation fluoroquinolones significantly
improve treatment outcomes of XDR-TB [25]. Before there is sufficient clinical evidence to support the
use of novel drugs in the treatment of MDR-TB, linezolid has been compassionately used as a repurposed
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FIGURE 1 Anti-tuberculosis drug development and the increase in number of notified multidrug-resistant tuberculosis
(MDR-TB) cases worldwide.
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FIGURE 2 Mechanisms of action of anti-tuberculosis drugs. Drugs already in use are shown in blue, the newly approved drugs are shown in red and drugs
undergoing clinical trials are shown in black.
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agent in the treatment of fluoroquinolone-resistant MDR-TB with success [26-28] and a formal early
bactericidal activity (EBA) trial of linezolid is in the final planning stage. A consensus for the management
of patients with MDR-TB and XDR-TB has recently been released providing state-of-the-art treatment
guidance [29].

The past decade has witnessed the advent of many novel compounds and drugs, of which six have been
evaluated in phase IT and III clinical trials (fig. 2 and table 1), and two (bedaquiline and delamanid) have
been conditionally approved for the treatment of MDR-TB (table 1). Novel drugs will substantially influence
future treatment of drug-resistant TB. An important issue is the emergence of bacillary resistance to new
drugs, as has happened to streptomycin, isoniazid, and rifampicin after their introduction as a result of
multiple avoidable factors [30, 31]. It is thus imperative that novel drugs be used in adequate dosages and
combinations under an optimal healthcare infrastructure [32] to forestall the occurrence of drug resistance.

To help clinicians better understand the latest development in the clinical management of drug-resistant
TB, this review mainly discusses six novel drugs that have been evaluated in phase II and III trials
(bedaquiline, delamanid, PA-824, sutezolid, AZD5847 and SQ109), with focus on the clinical evidence for
efficacy and safety, potentially important drug interactions, and prospect for using multiple novel drugs in
new regimens.

Novel drugs

Bedaquiline

Bedaquiline is the first novel drug that has been conditionally approved for treating adult pulmonary
MDR-TB by the US Food and Drug Administration (FDA) in December 2012, and by the European
Medicines Agency (EMA) in March 2014 [33-36].

Bedaquiline (Sirturo, Janssens Pharmaceuticals) is a diarylquinoline with a new mechanism of action. By
inhibiting the mycobacterial ATP synthase, thereby leading to intracellular ATP depletion [37],
bedaquiline acts on both actively replicating and dormant mycobacteria, which still maintain residual ATP
synthase activity [38]. Resistance develops through point mutations in the gene atpE, which encodes part
of the ATP synthase, at predictable rates that are similar to those observed for rifampicin. Mutations
conferring bacillary resistance to bedaquiline do not cause cross-resistance to other anti-TB drugs, except
for clofazimine, possibly due to the upregulation of a multi-substrate efflux pump [39], which has also
been found in clinical isolates [40]. With extensive tissue distribution and a long half-life, the
recommended dose of bedaquiline for pulmonary MDR-TB in adults is 400 mg once daily for 2 weeks,
followed by 200 mg three times weekly, for a total duration of 24 weeks [41].

The clinical evidence for using bedaquiline mainly came from one phase II clinical trial carried out in two
stages [41], which showed that adding bedaquiline to a standard background MDR-TB treatment regimen
significantly decreased the time to sputum culture conversion with a hazard ratio of 11.8 (95% CI 2.3-
61.3), significantly increased the proportion of patients with culture conversion from 9% to 48% at 8
weeks [42], and from 57.6% to 77.6% at 24 weeks [43], and nonsignificantly prevented the acquisition of
additional resistance to other accompanying drugs [43].
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TABLE 1 Profile of promising drug candidates for revolutionising treatment of multidrug-resistant (MDR) tuberculosis (TB)

Drug Drug class Mode of action Mode of administration Function Toxicity Study Comment
and current dosage phase
AZD5847 Oxazolidinone Inhibition of microbial Oral, 500-1200 mg Bactericidal Well tolerated, Ila Ongoing EBA, including
protein synthesis (blocks per day non-severe dose-finding study
50S ribosomal subunit) gastrointestinal
symptoms, white blood
cells count changes
Bedaquiline Diarylquinoline Inhibition mycobacterial Oral, 400 mg per day for Sterilising and QT-prolongation, I FDA approved, EMA
(TMC207) ATP synthase 2 weeks, 200 mg three times bactericidal unexplained excess approved
per week for 22 weeks mortality
Delamanid Nitro-dihydro- Mycolic acid cell wall Oral, 100 mg per day for Bactericidal Well tolerated, 1l EMA approved
(OPC-67683) imidazooxazole inhibition 2 months, then 200 mg per QT-prolongation
day for 4 months
Gatifloxacin Fluoroquinolone DNA gyrase inhibition Oral or intravenous Sterilising? and QT-prolongation, Il Market withdrawal in 2006
bactericidal dysglycaemia, due to risk of dysglycaemia
hallucination, liver
toxicity
Linezolid Oxazolidinone Inhibition of microbial Oral or intravenous, Bactericidal Myelosuppression, Il Used for MDR/XDR-TB
protein synthesis (blocks 300-600 mg per day peripheral neuropathy, since 2005 with good
50S ribosome subunit) rhabdomyolysis efficacy but substantial
toxicity in long-term
treatment
PA-824 Nitroimidazole Reactive nitrogen Oral, 100-200 mg per day Sterilising and Well tolerated IIb Less expensive and easier
compound, cell wall bactericidal to co-administer with
synthesis inhibition antiviral drugs, with
potential for shortening
therapy using PA-824,
moxifloxacin and
pyrazinamide
SQ109 1,2-ethylenediamine Cell wall synthesis Oral, 300 mg per day Bactericidal No serious adverse Ila Currently under evaluation
inhibition events, gastro-intestinal in MDR-TB patients in the
predominantly Russian Federation
Sutezolid Oxazolidinone Inhibition of microbial Oral, 600-1200 mg per day Bactericidal Well tolerated Il Besides concerns about

(PNU-100480)

protein synthesis (blocks
50S ribosomal subunit)

neurotoxicity after
prolonged use,
hepatotoxicity is a
potentially important
side-effect

EBA: early bactericidal activity; FDA: US Food and Drug Administration; EMA: European Medicines Agency; XDR: extensively drug-resistant.

TV L3 NYVI0 "a’l | SISOTNdd3dnt



DOI: 10.1183/09031936.00162314

TUBERCULOSIS | I.D. OLARU ET AL.

At the end of the 120 weeks of evaluation period of the trial cure rates according to WHO definitions were
58% in the bedaquiline group and 32% in the placebo group (p=0.003) [44]. However, an unexplained
increase in the risk of mortality was observed among the bedaquiline treatment group [43, 44]. Whether
bedaquiline may shorten TB treatment, as has been suggested by animal studies [45, 46], should be
interpreted with caution as bedaquiline was given with pyrazinamide, and in vitro data have also suggested
that its EBA may be substantially dependent on concurrent use of pyrazinamide [47].

Besides an unexplained increase in the risk of mortality, bedaquiline may be associated with nausea,
arthralgia, headache, liver injury, and QT prolongation [41]. Although QT prolongation cannot explain the
significant increase in the risk of death, both the phase II clinical trial and another single-arm open-label
trial have suggested that bedaquiline prolongs QT, and this risk is additively increased by concurrent use
of other QT prolonging drugs [41]. It is thus important to take precaution in combining bedaquiline with
other QT-prolonging drugs, which include clofazimine, fluoroquinolone (especially moxifloxacin [48]),
and delamanid (see below) [49, 50].

Delamanid

Approved by EMA in November 2013 for conditional use in the treatment of MDR-TB, delamanid is the
second (and the last one to date) novel drug that has been licenced for treating adult pulmonary MDR-TB
[51, 52].

Delamanid (Deltyba, Otsuka Pharmaceuticals) is a derivative of metronidazole and a nitroimidazopyran
(nitro-dihydro-imidazooxazole, 6-nitro-2,3-dihydroimidazo(2,1-b) oxazole). As a prodrug that requires
activation for pharmacological activity, delamanid works by inhibiting mycolic acid biosynthesis. There is
as yet no recommendation about dosage, pending the release of data from a completed multi-centre phase
III trial that has evaluated use of delamanid 100 mg twice daily for 2 months followed by 200 mg once
daily for 4 months. By sharing similar structure as nitro-dihydro-imidazooxazole derivatives, there may be
cross-resistance between delamanid and PA-824 [53].

The clinical evidence for using delamanid is based on short-term phase II clinical trial data. A phase II
multi-centre randomised placebo-controlled trial involving 481 MDR-TB patients showed that delamanid
added to an optimal background regimen significantly increased the proportion with sputum culture
conversion at 2 months from 29.6% (placebo) to 45.4% (delamanid 100 mg twice daily), and 41.9%
(delamanid 200 mg twice daily) [49]. An open-label extension of this phase II trial showed that delamanid
use for more than 6 months in comparison with use for less than 2 months significantly increased the
proportion with favourable outcomes (cure or treatment completion) from 55% to 74.5% and significantly
reduced mortality from 8.3% to 1.0% [54].

Delamanid significantly prolongs the QT interval from 3.8% (placebo arm) to 9.9% (delamanid 100 mg
twice daily) and 13.1% (delamanid 200 mg twice daily) [49]. Despite the lack of clinical events [49], it is
thus important to increase vigilance when combining delamanid with bedaquiline, clofazimine, and
fluoroquinolones (especially moxifloxacin).

PA-824 [pretomanid)

PA-824 is a bicyclic nitroimidazole and a prodrug that requires intracellular activation by a
F420-dependent glucose-6-phosphate-dehydrogenase pathway. Activation produces a des-nitro metabolite
that generates reactive nitrogen species (including NO) leading to a decrease in intracellular ATP and
anaerobic killing (similar to the action of cyanide) [55, 56]. Although PA-824 seems to be more effective
in anaerobic conditions [57], it also kills aerobically by inhibiting cell wall mycolic acid biosynthesis
(similar to the action of isoniazid) [56]. As such, PA-824 expectedly showed activity against both
replicating and non-replicating bacteria [58], and both drug-resistant and drug-susceptible TB [58-61].
Mutations have been identified in fgdI and ddn [57, 62, 63], with cross-resistance to 5-nitrothiophenes (a
tuberculostatic compound) [64] as well as delamanid [53]. With minimal inhibitory concentration (MIC)
around 0.15-0.3 pg-mL_1 [58, 63], the activity of PA-824 is comparable to a combination of isoniazid and
rifampicin in the continuation phase of a murine drug model [61]. As a large fraction of the active
compound is plasma bound, its activity may be reduced in cavitary TB [65].

A phase II randomised controlled trial of EBA (NC-003) involving patients with smear-positive
pulmonary TB suggested that the EBA of PA-824 was greatly dependent on its synergy with pyrazinamide,
and a triad of PA-824, moxifloxacin and pyrazinamide gave the highest EBA, thereby suggesting its
potential for further clinical trials [47]. The treatment efficacy of this triad has been evaluated in a phase II
randomised controlled trial, pending the release of findings [66].

In humans, PA-824 has been well tolerated with constant pharmacodynamic parameters when given once
daily, with the maximum serum drug level reached about 4-5 h following oral administration [59, 67, 68].
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In a phase II dose-finding EBA study in which PA-824 was given over 14 days, the drug appeared safe and
efficacious when given between 100 mg and 200 mg once daily [69]. PA-824 might induce a mild
QT-interval prolongation [69] as well as a slight transient increase in creatinine that is not linked to a
decrease in the glomerular filtration rate [59]. The effect of PA-824 and moxifloxacin in combination on
the QT-interval is currently under evaluation [70].

Sutezolid

Sold to Sequella in July 2013, sutezolid (PNU-100480) is a linezolid analogue initially developed by Pfizer
for evaluation of potentially better in vivo activity and less toxicity in comparison with linezolid [71]. With
a substantially lower MIC against M. tuberculosis and reduction of MIC in acidic pH, sutezolid has
demonstrated higher bactericidal activity than linezolid, as well as perhaps potential sterilising activity
[72]. The whole-blood bactericidal activity of sutezoid 600 mg twice daily is higher than that of linezolid
300 mg once daily [73]. Although the EBA of sutezolid is significantly lower than that of the standard
regimen [74] a whole blood bactericidal activity assay has demonstrated its synergistic activity with
pyrazinamide [73].

Sutezolid does not appear to cause QT-interval prolongation or bone marrow suppression [73], although
there are still concerns regarding potential neurotoxicity and hepatotoxicity. With a similar mitochondrial
protein synthesis safety profile as linezolid 300 mg once daily, prolonged use of sutezolid 600 mg twice
daily may cause peripheral neuropathy [27, 75]. A phase II randomised controlled trial of EBA has
demonstrated the occurrence of transient and asymptomatic elevation of alanine transaminase among 14%
patients in the sutezolid arm [74].

AZD5847

Like linezolid, AZD5847 is an oxazolidinone that inhibits mycobacterial protein synthesis by binding to
the 50S ribosomal subunit; its in vitro bactericidal activity is superior to that of linezolid [76]. AZD5847
appears to be safe and well tolerated in healthy volunteers, with nausea being the most common adverse
effect occurring at higher dosages [77]. A phase Ila trial of EBA with four different dosing strategies has
been completed and results will hopefully be available in 2014 [78].

5Q109

Structurally related to ethambutol, SQ109 is a 1,2-ethylenediamine with a different mechanism of action
and preserved activity against ethambutol-resistant M. tuberculosis isolates. Targeting the transmembrane
transporter encoded by the mmpL3 gene, SQ109 interferes with cell wall assembly [79].

In Russia and Kazakhstan, clinical trials of 6 months of SQ109 added to a background MDR-TB treatment
regimen given over 18 months will be compared to the background regimen alone. However the number
of patients is relatively small and the resulting data might not suffice to register SQ109 outside Russia and
the Commonwealth of Independent States [80].

SQ109 appears to be safe and well tolerated in human studies. However, all SQ109-containing arms have
been terminated in the multi-arm, multi-stage trial due to lack of sufficient efficacy.

Interactions with antiviral drugs and azoles
TB disease commonly coexists with HIV that requires simultaneous treatment with antiviral drugs. Azoles
may be used among immunocompromised patients with coexisting fungal infection.

Bedaquiline is metabolised via the cytochrome (CYP) P450 3A4 leading to the formation of a much less
active but potentially more toxic N-monodesmethyl metabolite [81]. In one study bedaquiline given with
efavirenz, which is a CYP3A4 inducer [82], led to only a slight decrease in bedaquiline concentrations
[83]. In contrast a nonlinear-mixed effects model evaluating the interaction between bedaquiline and
efavirenz predicted that simultaneous treatment would lead to a 52% reduction in steady state
concentrations of both bedaquiline and its metabolite. Reduced exposure could be prevented by adjusting
the bedaquiline dose during concomitant treatment [81]. Co-administration of bedaquiline with nevirapine
did not influence bedaquiline exposure [84]. Bedaquiline should be used with caution in patients receiving
ritonavir-boosted lopinavir because co-administration was shown to cause a 22% increase in bedaquline
exposure [72, 85].

It has been estimated that 30% of sutezolid and 20% of PA-824 are also metabolised by CYP3A4 [86].
Co-administration of PA-824 and efavirenz reduces the peak serum concentration and the area under
concentration-time curve of PA-824 each by around 30%. Clinical significance is unknown [73].
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With no influence on the CYP enzymes, delamanid has a low potential for drug interactions. There are no
clinically significant changes in drug exposure on co-administration of delamanid with efavirenz [87],
ritonavir-boosted lopinavir or tenofovir [88].

SQ109 is neither activated nor metabolised via CYP3A4, but it is partially metabolised by CYP2C19,
which is in turn strongly inhibited by fluconazole [86, 89]. The clinical implications of these interactions
are yet to be investigated.

Clinical trials involving novel drugs used in combination

To expedite the development of better TB treatment, it is probably necessary to use novel drugs in
combination to formulate new TB drug regimens that rapidly reduce mortality and infectiousness with
good bactericidal activity, maximally safeguard against the emergence of bacillary drug resistance with
different mechanisms of action and, preferably, shorten treatment with prominent sterilising activity [90].
Given relatively scarce data on the use of novel drugs in combination, vigilance is always needed to closely
monitor potential drug interactions and toxicity.

As bacillary resistance to fluoroquinolones [91, 92] and pyrazinamide [93, 94] is substantial among
patients with MDR-TB, particularly in some geographical areas, it is probably better to use at least two,
and perhaps three, novel drugs in combination, notwithstanding the preliminary promising activity from
use of single novel agents, such as PA-824 alongside moxifloxacin and pyrazinamide [47]. This approach
would help better safeguard against the amplification of bacillary resistance to both novel and existing TB
drugs.

There are at least two conducted clinical trials involving novel drugs used in combination. The Global
Alliance for TB Drug Development (TB Alliance) has sponsored a phase II randomised controlled trial of
EBA (NC-001) involving patients with smear-positive pulmonary TB, which showed that the multi-agent
EBA of PA-824 and bedaquiline was substantially lower than that of pyrazinamide with either PA-824 or
bedaquiline [47]. The TB Alliance has also spearheaded a phase II randomised controlled trial involving
patients with smear-positive pulmonary TB to further evaluate the EBA of PA-824 and bedaquiline in the
presence of clofazimine, pyrazinamide or both [95].

There are at least two planned trials that will evaluate regimens containing multiple novel drugs: NiX-TB
and MARVEL [78]. NiX-TB is a phase III non-controlled trial of a 6-month salvage regimen comprising
linezolid, bedaquiline and PA-824. MARVEL is a phase II study of 8-week treatment with various
combinations of sutezolid, bedaquiline, PA-824, pyrazinamide, levofloxacin and clofazimine.

A number of factors might have influenced the choice of combining novel drugs in clinical trials: in vitro
data and findings from murine TB models about efficacy of certain combinations (table 2), concerns about
life-threatening arrhythmia during concurrent use of novel (bedaquiline, delamanid) and existing
(moxifloxacin, clofazimine) QT-prolonging drugs, synergistic activity of most novel drugs (bedaquiline,
delamanid, PA-824, sutezolid) with pyrazinamide [53, 73, 99, 100], and possibly the relative difficulty in
procuring delamanid and SQ109 in clinical trials.

Novel designs for clinical trials

Useful for screening and selecting potential drug candidates, in vitro data and animal models can never
replace clinical trials in the evaluation of treatment efficacy and safety. Murine TB models have important
disadvantages including the lack of full knowledge on the bioequivalent doses and also difference in
pathogenetic mechanisms. There have been instances when observations derived from murine TB models

TABLE 2 Evidence from in vitro data or animal models that may affect the choice of combining novel drugs in clinical trials

Novel drugs in combination Evidence

Bedaquiline and PA-824 Murine TB model: sterilising activity 45

Bedaquiline, PA-824 and pyrazinamide Murine TB model: treatment over 4 months prevented relapse 45
Bedaquiline, PA-824 and pyrazinamide In vitro: antagonistic effect due to PA-824

Bedaquiline and SQ109 In vitro: synergy 96

Bedaquiline, SQ109 and pyrazinamide Murine TB model: sterilising activity 89

Bedaquiline and sutezolid Murine TB model: sterilising activity 46

Bedaquiline, sutezolid and SQ109 In vitro: additive activity 97

Bedaquiline, sutezolid and/or PA-824, and clofazimine Murine TB model: treatment over 4 months resulted in low relapse rates 46
Sutezolid and SQ109 In vitro: additive activity 98

DOI: 10.1183/09031936.00162314 1125



TUBERCULOSIS | I.D. OLARU ET AL.

were discordant with those observed in human trials [101]. Additionally, given the current
recommendation of treating MDR-TB for nearly 2 years [21], and the small sample size often used in
animal experiments, it is difficult to evaluate sterilising activity in non-primate animal models.

The required sample size increases with the stage of drug development (table 3). In the absence of reliable
surrogate markers for treatment outcomes, it is challenging to thoroughly evaluate treatment efficacy and
safety in phase III clinical trials. In an attempt to expedite drug development, new methods such as EBA
studies and multi-arm, multi-stage adaptive design have been adopted, although none can replace phase
I trials.

EBA studies measure the fall in colony forming units (CFU) or the time to detection in liquid culture.
This method provides reproducible results regarding efficacy although it does not reliably predict
sterilising activity. The technique is mainly used for dose finding and preliminary evaluation of toxicity in
a small sample [102] up to 14 days. Using this approach to evaluate PA-824, it has been shown that the
mean multi-agent 14-day EBA of PA-824, moxifloxacin and pyrazinamide is comparable with that of the
current standard treatment and significantly higher than those of bedaquiline, bedaquiline with
pyrazinamide, and bedaquiline with PA-824 [47].

Previously used in other fields such as oncology, multi-arm, multi-stage adaptive design involves planned
interim analyses at pre-specified time points to expedite the evaluation of different arms [103]. Weaker
arms that do not meet pre-specified efficacy criteria are terminated, thereby focusing resources on
alternative arms that are potentially more efficacious. Additionally, new arms can be flexibly added while
the trial is in progress. A caveat is the need of reliable surrogate biomarkers at the pre-specified time
points and an adequate number of comparison arms. Meanwhile, the hunt for reliable biomarkers and
biosignatures that could help clinicians personalise TB treatment continues. Candidate markers are still in
preclinical or early clinical evaluation; none can be recommended for routine use [12].

In the evaluation of new treatment combinations, it cannot be overemphasised that clinical trials be
designed such that the risk of acquiring bacillary resistance to novel drugs is minimised.

Future outlook

In the coming decade, there are likely some newly developed anti-TB drugs that can substantially improve
the current treatment of MDR/XDR-TB. Although the high efficacy of the newly developed anti-TB agents
is unequivocal, the safety and tolerability of these novel drugs [104, 105] remain to be further evaluated in
larger studies, and the resources that would be incurred are yet to be determined.

In harnessing repurposed agents to strengthen current treatment regimens for drug-resistant tuberculosis
[106, 107] it is highly warranted to fathom novel approaches in the administration schedules that can
concomitantly optimise the efficacy and safety of these drugs, especially linezolid. Further studies involving

TABLE 3 Current concepts of clinical trials involving investigational agents

Experimental Characteristics
Phase treatment duration
Phase lla 14 days EBA studies, confirm the efficacy of novel agents or drug

combinations in humans in initial phase of treatment, dose
finding, assessment of pharmacokinetics and toxicity, do not
determine cure, single or dual site studies
Phase IIb 8 weeks Intermediate stage, final dosage but not full duration, primary
end-point SCC at 8 weeks with often long-term follow-up, can
predict but do not prove cure

Phase Il 6-9 months Final stage for registration, usually non-inferiority design in
drug-susceptible TB (sample size >1000), superiority design in

MDR-TB (sample size 300-500), evaluate sterilising activity of

regimens (sustained SCC), multi-site, multi-continent studies

MAMS Various durations, like Adaptive trial design, multiple study arms run alongside one

phase Il or lll control arm, poorly performing arms are discontinued at
pre-specified intervals, cost-effective

MAMS: multi-arm, multi-stage; EBA: early bactericidal activity; SCC: sputum culture conversion; TB:
tuberculosis; MDR: multidrug-resistant.
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sizeable samples may be required to delineate the clinical role of other repurposed agents, which include
clofazimine, meropenem and other carbapenems, thioridazine, and possibly co-trimoxazole [106].

Pharmacogenomics furnish great promise as an important tool to help in the evaluation of drug-associated
toxicity [108], using different animal models including the mouse, possibly the zebra-fish [109] and
non-human primates [110]. Such data might also have utility in clinical trials and settings to manage
toxicity incurred by anti-TB drugs [111].

There are grounds for rekindling an interest in exploring the inhaled route of drug administration [112].
In the 1950s, streptomycin was first successfully used by an inhaled route to treat childhood TB with
advanced radiographic lesions [113]. The advent of MDR-TB prompted further exploration using inhaled
kanamycin and gentamicin [112, 114, 115]. The rationale was to attempt delivering a higher dose of the
aminoglycoside to achieve better efficacy, without concomitant escalation in systemic toxicity, in these
formidable drug-resistance settings. The preliminary results portrayed good patient outcome. A recent
phase I, single-dose, dose-escalating study aimed at demonstrating the safety and tolerability of
capreomycin, administered through a dry powder inhalational device in healthy subjects [116]. By the
same token, much enthusiasm has been devoted to exploring the potential use of inhaled clofazimine in
the treatment of pulmonary TB [112]. A recent study examined the efficacy of inhaled riminophenazine in
dry powder leucine microparticles against M. tuberculosis in the human macrophage cell culture and
aerosol-infected mouse model [117]. The inhaled route of delivering fluoroquinolones has also been
studied in some preliminary experiments using ofloxacin [118] and levofloxacin [119], respectively. If a
high-dose fluoroquinolone given by the oral route is limited by tolerability, as shown in the ongoing trials,
an alternative approach may be to combine the oral and inhaled routes of drug delivery. Use of inhaled
pyrazinamide proliposome for targeting alveolar macrophages has been recently evaluated [120]. A similar
approach may be considered for novel drugs such as PA-824, which has been administered in dry powder
aerosol to guinea pigs with less rapid clearance from the lungs by the inhalation route than oral delivery
[121, 122]. However, it might be simpler to licence the use of a repurposed agent through a new route of
delivery than a novel drug.

Host immunity plays a pivotal role in the manifestation of TB disease. Adjunct immunotherapy, which
includes host-directed therapies with immunoadjuvants [123-125], recombinant cytokines [126-128] or
therapeutic vaccinations [128-138], should be further explored to possibly improve the treatment outcome
of drug-resistant TB, especially difficult forms of MDR/XDR-TB [139].

TB with increasingly drug-resistant forms has clearly posed a gigantic threat to global health. With rapidly
evolving development of new diagnostic tools and drugs, the battle against this old foe of mankind may
not be insurmountable.
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