

Respective roles of non-pharmaceutical interventions in bronchiolitis outbreaks: an interrupted time-series analysis based on a multinational surveillance system

Lea Lenglart ^{1,45}, Naim Ouldali^{2,3,4,5,45}, Kate Honeyford⁶, Zsolt Bognar⁷, Silvia Bressan⁸, Danilo Buonsenso ⁹, Liviana Da Dalt⁸, Tisham De¹⁰, Ruth Farrugia¹¹, Ian K. Maconochie^{12,13}, Henriette A. Moll¹⁴, Rianne Oostenbrink ¹⁴, Niccolo Parri¹⁵, Damian Roland^{16,17}, Katy Rose¹², Esra Akyüz Özkan¹⁸, François Angoulvant², Camille Aupiais^{4,19}, Clarissa Barber²⁰, Michael Barrett^{21,22}, Romain Basmaci²³, Susana Castanhinha²⁴, Antonio Chiaretti⁹, Sheena Durnin ²⁵, Patrick Fitzpatrick²⁶, Laszlo Fodor²⁷, Borja Gomez²⁸, Susanne Greber-Platzer²⁹, Romain Guedj³⁰, Florian Hey³¹, Lina Jankauskaite³², Daniela Kohlfuerst³³, Ines Mascarenhas³⁴, Anna Maria Musolino³⁵, Zanda Pučuka³⁶, Sofia Reis³⁷, Alexis Rybak^{1,4,5}, Petra Salamon⁷, Matthias Schaffert³⁸, Keren Shahar-Nissan³⁹, Maria Chiara Supino ³⁵, Ozlem Teksam⁴⁰, Caner Turan⁴¹, Roberto Velasco⁴², Ruud G. Nijman^{10,12,13,46}, Luigi Titomanlio^{1,43,46} and the EPISODES Study Group⁴⁴

¹Paediatric Emergency Department, Robert Debré University Hospital, AP-HP, Université de Paris, Paris, France. ²Department of General Paediatrics. Paediatric Infectious Disease and Internal Medicine. Robert Debré University Hospital. AP-HP. Université de Paris. Paris, France. ³Infectious Diseases Division, CHU Sainte Justine, Montreal University, Montreal, QC, Canada. ⁴Paris University, INSERM UMR 1123, ECEVE, Paris, France. ⁵Association Clinique et Thérapeutique Infantile du Val-de-Marne, St Maur-des-Fossés, France. ⁶Health Informatics Team, Division of Clinical studies, Institute of Cancer Research, London, UK. ⁷Paediatric Emergency Department, Heim Pal National Paediatric Institute, Budapest, Hungary. ⁸Division of Paediatric Emergency Medicine, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy. ⁹Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. ¹⁰Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK. ¹¹Department of Child and Adolescent Health, Mater Dei Hospital, Msida, Malta. ¹²Department of Paediatric Emergency Medicine, Division of Medicine, St Mary's Hospital, Imperial College NHS Healthcare Trust, London, UK. ¹³Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK. ¹⁴Department of General Paediatrics, ErasmusMC – Sophia, Rotterdam, The Netherlands. ¹⁵Emergency Department and Trauma Center, Ospedale Paediatrico Meyer Firenze, Florence, Italy. ¹⁶SAPPHIRE Group, Health Sciences, Leicester University, Leicester, UK. ¹⁷Paediatric Emergency Medicine Leicester Academic (PEMLA) Group, Leicester Hospitals, Leicester, UK. ¹⁸Paediatric Emergency Department, Ondokuz Mayıs University, Samsun, Turkey. ¹⁹Paediatric Emergency Department, Jean Verdier Hospital, AP-HP, Sorbonne Paris Cité, Bondy, France. ²⁰Paediatric Emergency Department, University Hospitals Bristol NHS Foundation Trust, Bristol, UK. ²¹Paediatric Emergency Department, Children's Health Ireland at Crumlin, Dublin, Ireland. ²²Women's and Children's Health, School of Medicine, University College Dublin, Dublin, Ireland. ²³Paediatric Emergency Department, Louis Mourier Hospital, AP-HP, Université de Paris, Colombes, France. ²⁴Hospital Dona Estefania, Centro Hospitalar de Lisboa Central, Lisbon, Portugal. ²⁵Department of Paediatric Emergency Medicine, Children's Health Ireland at Tallaght, Dublin, Ireland. ²⁶Paediatric Emergency Department, Children's Health Ireland at Temple Street, Dublin, Ireland. ²⁷Paediatric Emergency Department, Szent Gyorgy University Teaching Hospital of Fejer County, Szekesfehervar, Hungary. ²⁸Paediatric Emergency Department, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain. ²⁹Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for Paediatrics, Medical University of Vienna, Vienna, Austria. ³⁰Paediatric Emergency Department, Armand Trousseau Hospital, AP-HP, Sorbonne Université, CRESS Inserm U-1153 Paris, Epopé Team, Paris, France. ³¹Pediatric Intensive Care Unit and Emergency Department, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany. ³²Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania. ³³Department of General Paediatrics, Medical University of Graz, Graz, Austria. ³⁴Departamento da Criança e do Jovem, Urgencia Pediatrica, Hospital Prof. Doutor Fernando da Fonseca, Amadora, Portugal. ³⁵Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy. ³⁶Paediatric Emergency Department, Children's Clinical University Hospital, Riga Stradins University, Riga, Latvia. ³⁷Paediatric Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal. ³⁸Department of Pediatrics and Department of Paediatric and Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal. ²⁷Department of Pediatrics and Department of Paediatric and Adolescent Surgery, Paracelsus Medical University, Salzburg, Austria. ³⁹Paediatric Emergency Department, Schneider Children's Medical Center of Israel and Sackler Faculty of Medicine, Petach Tikva, Israel. ⁴⁰Division of Paediatric Emergency Medicine, Department of Paediatrics, Hacettepe University School of Medicine, Ankara, Turkey. ⁴¹Department of Paediatrics, Division of Emergency Medicine, Mersin City Training and Research Hospital, Toroslar, Turkey. ⁴²Paediatric Emergency Unit, Hospital Universitario Río Hortega, Valladolid, Spain. ⁴³Paris University, INSERM U1141, DHU Protect, Paris, France. ⁴⁴A list of EPISODES Study Group members is provided in the Acknowledgements. ⁴⁵L. Lenglart and N. Ouldali contributed equally to this work. ⁴⁶R.G. Nijman and L. Titomanlio contributed equally to this work.

Corresponding author: Lea Lenglart (lea.lenglart@gmail.com)

Shareable abstract (@ERSpublications)

Among the various non-pharmaceutical interventions implemented against SARS-CoV-2 in Europe, full lockdown, school closure, facial masking and teleworking were preventive measures associated with a reduction in the number of bronchiolitis cases https://bit.ly/3SyqqYS

Cite this article as: Lenglart L, Ouldali N, Honeyford K, *et al.* Respective roles of non-pharmaceutical interventions in bronchiolitis outbreaks: an interrupted time-series analysis based on a multinational surveillance system. *Eur Respir J* 2023; 61: 2201172 [DOI: 10.1183/13993003.01172-2022].

This single-page version can be shared freely online.

Abstract

Background Bronchiolitis is a major source of morbimortality among young children worldwide. Nonpharmaceutical interventions (NPIs) implemented to reduce the spread of severe acute respiratory syndrome coronavirus 2 may have had an important impact on bronchiolitis outbreaks, as well as major societal consequences. Discriminating between their respective impacts would help define optimal public health strategies against bronchiolitis. We aimed to assess the respective impact of each NPI on bronchiolitis outbreaks in 14 European countries.

Methods We conducted a quasi-experimental interrupted time-series analysis based on a multicentre international study. All children diagnosed with bronchiolitis presenting to the paediatric emergency department of one of 27 centres from January 2018 to March 2021 were included. We assessed the association between each NPI and change in the bronchiolitis trend over time by seasonally adjusted multivariable quasi-Poisson regression modelling.

Results In total, 42 916 children were included. We observed an overall cumulative 78% (95% CI -100--54%; p<0.0001) reduction in bronchiolitis cases following NPI implementation. The decrease varied between countries from -97% (95% CI -100--47%; p=0.0005) to -36% (95% CI -79-7%; p=0.105). Full lockdown (incidence rate ratio (IRR) 0.21 (95% CI 0.14–0.30); p<0.001), secondary school closure (IRR 0.33 (95% CI 0.20–0.52); p<0.0001), wearing a mask indoors (IRR 0.49 (95% CI 0.25–0.94); p=0.034) and teleworking (IRR 0.55 (95% CI 0.31–0.97); p=0.038) were independently associated with reducing bronchiolitis.

Conclusions Several NPIs were associated with a reduction of bronchiolitis outbreaks, including full lockdown, school closure, teleworking and facial masking. Some of these public health interventions may be considered to further reduce the global burden of bronchiolitis.

Copyright ©The authors 2023. For reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.02214-2022

Received: 8 June 2022 Accepted: 23 Sept 2022