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ABSTRACT: Granuloma is a feature of many chronic interstitial lung diseases, and
may serve as a focus for subsequent fibrosis. Granulomas are composed of structured
masses of cells of the macrophage lineage, which adopt an epithelioid aspect,
interspersed with lymphocytes. They are formed around local centres of irritation.
During their resolution, fibroblasts congregate around the structures and may
penetrate the interior.

In many cases, granulomas can disappear without leaving lasting traces. However,
especially when damage has occurred to the surrounding tissue, permanent scarring
and fibrosis may occur. Both types of cell present in the granuloma are capable of
secreting a number of factors influencing the accumulation and proliferation of
fibroblasts, both positively and negatively.

The possible roles played by the different factors and, especially, interactions
between them are discussed in the light of fibrosis formation. Possible therapeutic
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interventions are summarized.
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Several chronic interstitial lung diseases, such as sarcoid-
osis and hypersensitivity pneumonitis, are characterized
by an interstitial cellular infiltrate or alveolitis, granuloma,
and varying degrees of interstitial fibrosis [1-3]. Granulo-
matous lung diseases, like sarcoidosis, hypersensitivity
pneumonitis or histiocytosis X, are typified by the formation
of granulomas in the alveolar, bronchial and vascular
walls [4], although they differ in histological organization.
Alveolitis is thought to precede granuloma formation [1,
5]. The subsequent process of fibrosis involves the
accumulation of fibroblasts and extracellular matrix around
and within the granulomas, and is the main risk for
evolution towards permanent pulmonary dysfunction.

Granulomas are structured masses composed of macro-
phage-derived cells, which assume an epithelioid aspect,
and of lymphocytes. They form in response to local
irritation, and traces of the irritant material may be
recognizable within them [6]. They may occur in any
tissue or organ. Their resolution may proceed without
alteration of the tissue in which they are embedded, or
may involve erosion or replacement by scar tissue. During
their resolution, fibroblasts concentrate around the peri-
phery, and may infiltrate the mass. Whether a granu-
loma progresses to a local or a diffuse fibrotic lesion
probably depends on the extent of damage to the surroun-
ding tissue in which the granuloma was embedded.

Over the past years, it has been demonstrated that
fibrosis is under the control of inflammatory cells [7],
mainly macrophages, and results from interactions between
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very large numbers of cells; the human lung comprises
more than 10! alveolar macrophages and interstitial cells
[8]. This review focuses on the molecular interactions
between inflammatory cells and fibroblasts that lead to
fibrosis in granulomatous lung disorders.

Macrophage mediators acting on fibroblasts

Macrophages are able to release a variety of mediators
that can modulate fibroblast functions (table 1). Fibroblast
proliferation can be induced by tumor necrosis factor-
alpha (TNF-a), transforming growth factor-beta (TGF-
B), insulin-like growth factor-1 (IGF-1), (previously
described as alveolar macrophage-derived growth factor
(AMDGF)), interleukin-1-beta (IL-18), platelet-derived
growth factor (PDGF) and fibronectin [9-12]. Interferon-
gamma (IFN-y) stimulates proliferation in quiescent
fibroblasts but inhibits the multiplication of rapidly divid-
ing cells [11]. Interestingly, TNF-a is able, after intravenous
administration, to induce alveolitis and epithelial cell
damage in the absence of other factors [13]. TGF-f and
IGF-1 can induce collagen synthesis [10], while IFN-y
[14] and prostaglandin E, (PGE,) [15] downregulate
collagen production. TNF-a and IL-1f can induce PGE,
secretion [16], while IFN-y decreases it [12]. Finally,
the interstitium can be further modified by secreted
enzymes, such as collagenase, induced in fibroblasts by
TNF-a, TGF-B, IGF-1 and IL-1B whereas IFN-y and
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Table 1. — Effect of the different macrophage mediators on fibroblast metabolism
Cell Collagen PGE, Collagenase

proliferation synthesis release secretion
TNF-a + +/- + +
TGF—B + + +
IGF-1/AMDGF + + +
IL-1B + + + +
PDGF +
Fibronectin +
IFN-y +/- - -
PGE, -

+: upregulation; -: downregulation; +/-: variable results according to experimental conditions. PGE,: prostaglandin
E,; TNF-a: tumour necrosis factor-o; TGF-f: transforming growth factor-f3; IGF-1: insulin-like growth factor-
1; AMDGEF: alveolar macrophage-derived growth factor; IL-1f: interleukin-13; PDGF: platelet-derived growth

factor; IFN-y: interferon-y.

PGE, decrease its secretion [10]. Alveolar macrophages
are also able to modulate the proliferation of type II pneu-
mocytes [17].

Increased release of macrophage mediators in granulo-
matous lung disorders

The above mediators have been shown to be released
by macrophages in most spontaneous [10, 18] and
experimental [19] granulomatous lung disorders (table
2). For instance, an increased spontaneous secretion of
TNF-a by alveolar macrophages is observed in hypersen-
sitivity pneumonitis [20] and in sarcoidosis [21-24],
although in this disease other investigators only observed
increased levels of TNF-a after induction by lipopoly-
saccharide (LPS) [25, 26]. These discrepancies are more
likely to be due to differences in patient populations than
to technical aspects of the assay. Increased macrophage
expression of the TNF-a gene has been reported in chronic
beryllium disease [27], and in an experimental model of
granulomatous lung disease, where the release of TNF-
o by alveolar macrophages is increased in mice 4 weeks
after intranasal instillation of Faeni rectivirgula [28].

IGF-1 (previously AMDGEF) is also released in excess
by alveolar macrophages in sarcoidosis, hypersensitivity
pneumonitis, histiocytosis X and berylliosis [29], as is
fibronectin [30]. The level of PDGF gene expression is
increased in histiocytosis X [31]. As far as IL-1 is
concerned, the data are less clear. Whilst there is an
increased spontaneous release of IL-1 by alveolar macro-
phages 2 weeks after intranasal instillation of Faeni
rectivirgula in mice [28], and in hypersensitivity pneu-

monitis in human [20], the release of IL-1 has been a
matter of controversy in sarcoidosis. It is known that
the epithelioid granuloma cells and alveolar macrophages
express cytoplasmic IL-1 [32], and that, in experimental
pulmonary granulomatous disorders, both giant cells [4]
and epithelioid cells produce IL-1 [33]. The spontaneous
[34] or LPS-induced [35] release of IL-1 by alveolar
macrophages in sarcoidosis was initially thought to be
increased. But the levels of IL-1 messenger ribonucleic
acid (mRNA) is not increased in the alveolar macrophages
in sarcoidosis patients when compared to controls [36],
in keeping with data showing that alveolar macrophages
per se express the IL-1 gene poorly [37].

Macrophage adhesion and activation are early events,
as shown in vitro [38] and in vivo [39] after Schistosoma
mansoni infection, during leprosy [40], in tuberculosis
[41, 42], and after visna maedi virus infection in sheep
[43, 44].

Considering only the fibrosis-inducing mediators released
by alveolar macrophages, it is clear that most of them
are spontaneously released in excess in granulomatous
lung diseases (table 2). Similarly, the cytokine gene
expression in leprosy granulomas shows increased levels
of IL-1, TGF-B and granulocyte macrophage colony
stimulating factor (GM-CSF) mRNAs [45].

Interaction with lymphocytes and expansion of mononuclear
phagocytes

The degree of structural formation of granulomas varies
in different conditions, reflecting a difference in the
organizing activity of the cells involved. Cellular adhesion

Table 2. — Increased release of the different macrophage mediators acting on fibroblast metabolism

associated with granulomatous lung disorders

TNF-a IGF-1 IL-1B PDGF Fn IFN-y
Sarcoidosis + + + + +
Hypersensitivity pneumonitis + + +
Experimental HP + +
Histiocytosis X + + +
Berylliosis + + +

Fn: fibronectin; HP: hypersensitivity pneumonitis. For further abbreviations see legend to table 1.
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molecules participate in the localization of macrophages
and in antigen presentation by them [46], and increased
expression of CD11b and CD54 by alveolar macrophages
has been observed in sarcoidosis [46, 47], and hypersen-
sitivity pneumonitis [48]. Another potential mediator is
basic fibroblast growth factor (bFGF), which is known
to modify cell adhesion properties [49], and is produced
by macrophages.

These molecules play a crucial role in the structural
formation of tissues, and the level of their expression is
a probable factor in the organization of a granuloma [6],
and hence the type of fibrotic lesion which may follow
its unsatisfactory resolution. The level of vitronectin, a
mediator involved in cell adhesion, in bronchoalveolar
lavage is consistently elevated in sarcoidosis [50], and
in hypersensitivity pneumonitis [51]. The number of
macrophages may also be increased by local proliferation
within the alveolar spaces [52], and in the granulomas [32].

Modifications of fibroblast metabolism

Modifications of fibroblast metabolism, probably due
to the action of these mediators, have been observed in
most of these disorders. Fibroblast activation is strongly
suggested by the presence in bronchoalveolar lavage of
an increased level of procollagen III terminal peptide in
sarcoidosis [53], and in hypersensitivity pneumonitis
[54, 55], and of hyaluronic acid both in sarcoidosis [56,
57], and symptomatic hypersensitivity pneumonitis [54].
Thus, most interstitial lung diseases with granuloma for-
mation are characterized by an increased spontaneous re-
lease by alveolar macrophages of cytokines able to stimulate
fibroblast metabolism, and indeed, increased fibroblast
metabolism can be demonstrated in most of these natural
disorders. Increased lung collagen is also observed in
experimental hypersensitivity pneumonitis [58].

Role of lymphocytes

Lymphocytes are able to modulate fibroblast function
[59, 60], but whilst they stimulate proliferation in idiopathic
pulmonary fibrosis, they have a negative effect in hyper-
sensitivity pneumonitis [61]. They can modulate the influx
of monocytes to the alveolar spaces and granulomas, in
concert with immature monocyte-like macrophages, as
shown in sarcoidosis by phenotype [62], and function [63].
Finally, CD4 positive T-cells accumulate during granuloma
formation in tuberculosis [64], and sarcoidosis [65].

Differences in the pattern of fibrosis

The pattern of fibrosis clearly differs between the vari-
ous granulomatous diseases. They can be associated
either with a diffuse interstitial lung fibrosis, as in the
case of hypersensitivity pneumonitis, or a focal perigranulo-
matous fibrosis as in sarcoidosis.

The cells constituting a granuloma can and do secrete
factors that attract and stimulate fibroblasts. They can
also secrete factors which limit fibroblast activity and

which reabsorb the collagen produced. Not all granulomas
lead to fibrosis, and not all fibrosis is preceded by a
granuloma. Macrophages and T-lymphocytes can secrete
fibroblast-modifying factors in contexts other than granu-
lomas. Diffuse fibrosis could result from the expression
of the same activities by cells which have not organized
into a granulomatous structure. The precipitating factor
may be diffusely present in the organ, or the responding
cells may not be induced to organize, or may respond
differently to stimulatory mediators [66, 67]. Multiple
factors are probably involved in these differences in the
fibrotic process:

1) The level of release of mediators by alveolar macro-
phages may differ. For example, the level of release of
both IGF-1 [29], and fibronectin [30], is lower in sarcoidosis
than in idiopathic pulmonary fibrosis. Similarly, the level
of expression of PDGFpP by alveolar macrophages is
lower in sarcoidosis than in idiopathic pulmonary fibrosis
[68].

2) Inhibitory mediators can be released, for instance, IFN-
y released during sarcoidosis can down-regulate the
activation of fibroblasts [69, 70], and, indeed, changes
in fibrin structure, indicated by increased levels of D
dimer in bronchoalveolar fluid, suggest a diminution of
fibrinogenesis in sarcoidosis [71].

3) The mediators can interact. Both IL-1B or TNF-a
stimulate the proliferation of fibroblasts; however, when
added together to cell cultures they inhibit this proliferation
[72]. IL-1P potentiates, but PGE, blocks the proliferation
induced by the association of fibronectin and IGF-1 [73].
TNF-a and IFN-y added together block the stimulatory
effect of TGF-B on collagen production [74]. Some
mechanisms underlying these interactions have been
proposed: for example, PDGF induces IL-1 receptors on
fibroblasts [75], and IL-1 induces the expression of PDGF
[76]. It should, however, be noted that all the preceding
tests have been performed in vitro, and the results of
similar associations in vivo are unknown.

4) Fibroblasts can modulate other cell types. There are
clear interactions between macrophages and fibroblasts.
Fibroblasts can release mediators, including cytokines,
that can in turn act on macrophages and other fibroblasts.
TNF-o and IL-1 [16], or PDGF [4], can induce fibroblasts
to release PGE,, which inhibits macrophages and fibro-
blasts. In vitro, fibroblasts stimulated by TNF-a expre-
ssed monocyte chemoattractant protein-1 (MCP-1-huJE),
able to attract and activate monocytes) [77], and macro-
phage inflammatory protein-2 (MIP-2), a proinflamma-
tory cytokine [78]. In vivo, lung cells expressed high
levels of mRNA for MCP-1-huJE in experimental pulmo-
nary granulomatosis [79], and of mRNA for MIP-1a and
MIP-2 after experimental exposure to silica [78].

5) Interactions with the extracellular matrix occur and
play a role in controlling these interactions. Extracellular
matrix can locally concentrate cytokines, such as TGF-
B and PDGF. Collagen and collagen fragments stimulate
alveolar macrophages to release IL-1f, IL-6 [80], and
neutrophil chemotactic activity [81]. Additionally, com-
plex structures, such as acellular sarcoid granulomas, can
directly activate fibroblasts to release collagenase and
stromelysin [82].
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Table 3. — Inhibitory effect of therapeutic agents on the production of macrophage mediators
Corticoids Corticoids Colchicine Methotrexate
in vitro in vivo in vitro in vivo

TNF-a + + +

IGF-1/AMDGF - - +

IL-1B + +

Fibronectin - - +

+: inhibitory effect; -: lack of inhibitory effect. For abbreviations see legend to table 1.

6) Finally, damage to the alveolar epithelium seems
necessary for the induction of fibrosis [83], and differs
between the various disorders. It has been clearly demon-
strated that epithelial cell damage leaves the epithelial
basement membranes denuded and favours disruption.
Inflammatory and interstitial cells can then enter the
alveolar spaces, initiating intra-alveolar fibrosis, and
leading to alveolar collapse and/or coalescence and
intramural incorporation of the intra-alveolar fibrosis.
This sequence of events has been shown by analysis of
the pathology in hypersensitivity pneumonitis [84-86],
and histiocytosis X [87]. In contrast, less epithelial cell
damage is observed in sarcoidosis [88]. Damage to the
epithelial cells can be monitored by measuring the serum
level of an antigen (KL-6), expressed on type II pneumo-
cytes and bronchiolar epithelial cells, which is increased
in the serum of patients with idiopathic pulmonary fibrosis
and hypersensitivity pneumonitis, but not sarcoidosis
[89].

Therapeutic implications

Our understanding of the role of these mediators may
have therapeutic implications (table 3). Several agents
have a potential for modifying the production or release
of important factors. Whilst corticosteroids do not inhibit
the release of IGF-1 or fibronectin by macrophages either
in vitro or in vivo [90], colchicine is able to inhibit both
secretions in vitro [91]. Corticosteroids can, however,
block the release of TNF-a by alveolar macrophages in
vitro [92], and in vivo [20, 21], and of IL-1 both in
vitro [35], and in vivo [20]. Finally, TNF-a release is
inhibited by methotrexate [21]. Anti-TNF-a is able to
decrease the fibrosis observed in mice after intranasal
instillation of Faeni rectivirgula [28], showing the potential
for clinical improvement by interference with the mediators
of the fibrosis process.

In conclusion, pulmonary fibrosis is modulated by
inflammatory cells, mainly macrophages, in the alveolar
spaces and in the granuloma itself. Additional factors
(e.g. balance of mediators, interactions with the extracellular
matrix) play a role. Suppression of cytokine production
and/or effect is a method of interfering with the induction
of fibrosis.
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