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ABSTRACT 

Background: Occupational asthma, induced by workplace exposures to low 

molecular weight (LMW) agents such as toluene 2,4-diisocyanate (TDI), causes a 

significant burden to patients and society. Little is known about innate lymphoid cells 

(ILC) in TDI-induced asthma. A critical regulator of ILC function is microRNA-155, a 

microRNA associated with asthma.  

Objective: Determine whether TDI exposure modifies the number of ILC in the lung 

and whether microRNA-155 contributes to TDI-induced airway inflammation and 

hyperresponsiveness. 

Methods: C57BL/6 wild-type and microRNA-155 knockout mice were sensitized and 

challenged with TDI or vehicle. Intracellular cytokine expression in ILC and T cells 

was evaluated in bronchoalveolar lavage fluid (BAL) by flow cytometry. Peribronchial 

eosinophilia and goblet cells were evaluated on lung tissue and airway 

hyperresponsiveness was measured with the forced oscillation technique. Putative 

ILC2 cells were identified in bronchial biopsies of subjects with TDI-induced 

occupational asthma using immunohistochemistry. Human bronchial epithelial cells 

were exposed to TDI or vehicle. 

Results: TDI-exposed mice had higher numbers of airway goblet cells, BAL 

eosinophils, CD4+ T cells and ILC, with a predominant type 2 response and tended 

to have airway hyperresponsiveness. In TDI-exposed microRNA-155 knockout mice, 

inflammation and airway hyperresponsiveness was attenuated. TDI exposure 

induced IL-33 expression in human bronchial epithelial cells and in murine lungs, 

which was microRNA-155 dependent in mice. GATA3+CD3- cells, presumably ILC2, 

were present in bronchial biopsies. 

Conclusion: TDI exposure is associated with increased numbers of ILC. The 

proinflammatory microRNA-155 is crucial in a murine model of TDI asthma, 

suggesting its involvement in the pathogenesis of occupational asthma due to LMW 

agents.  



KEY MESSAGES 

 Innate lymphoid cells are increased in a mouse model of TDI-induced 

asthma and GATA3+CD3- cells are present in bronchial biopsies of 

subjects with TDI-induced occupational asthma. 

 TDI exposure can induce expression of the alarmin IL-33 in human 

bronchial epithelial cells in vitro and in murine lungs in vivo, which was 

microRNA-155 dependent in mice. 

 MicroRNA-155 plays a key proinflammatory role in an experimental 

model of TDI-induced asthma, which is characterized by type 2 

immunity-driven eosinophilic airway inflammation 

 

Capsule summary: Our translational research data show that innate lymphoid cells 

are involved in isocyanate-induced occupational asthma. MicroRNA-155 has a 

proinflammatory role in a preclinical mouse model, suggesting that it could be a 

promising therapeutic target. 

 

Key words: asthma, eosinophils, isocyanate, miR-155, innate lymphoid cells, ILC, 

occupational, TDI   



ABBREVIATIONS 

AHR airway hyperresponsiveness 

ALI air-liquid interface 

AOO acetone olive oil 

BAL bronchoalveolar lavage fluid 

concA concanavalin A 

EGDME ethylene glycol dimethyl ether 

HBEC human bronchial epithelial cells 

HMW high molecular weight 

ILC innate lymphoid cells 

ILC2 innate lymphoid cell(s) type 2 

KO knockout 

LMW low molecular weight 

LN lymph node 

miR-155 microRNA-155 

miRNAs microRNAs 

PAS periodic acid-Schiff 

R resistance 

TDI toluene 2,4-diisocyanate 

TSLP thymic stromal lymphopoietin 

WT wild-type  



INTRODUCTION 

 

Asthma is a heterogeneous airway disease with many phenotypes. Whereas the 

mechanisms of early onset allergic asthma are well understood, the mechanisms 

leading to late onset asthma are less known. One important example of late onset 

asthma is occupational asthma caused by workplace exposures to respiratory 

sensitizers or inhaled irritants. Occupational asthma is a growing public health 

burden in industrialized countries. Respiratory sensitizers encompass high molecular 

weight (HMW) agents (e.g. wheat flour, natural rubber latex, animal proteins) and 

low molecular weight (LMW) agents (e.g. acrylates and diisocyanates). Toluene 2,4-

diisocyanate (TDI) is an industrial intermediate which is processed into 

polyurethanes, used for the manufacture of foams, adhesives, paints and varnishes 

(1-3). Approximately 5-20% of workers long-term exposed to TDI develop asthma 

symptoms and have an accelerated decline in lung function (4, 5). 

TDI-induced occupational asthma generally develops within 2-3 years since the first 

exposure and may be the outcome of both an inflammatory reaction and non-specific 

airway hyperresponsiveness (AHR) (6-9). Both type 1 and type 2 immune responses 

can be induced (6). The response to TDI exposure in sensitized asthmatics can be 

very severe and removal from the workplace is often the only effective approach to 

prevent asthma attacks (3, 7, 9, 10). Elucidation of the pathogenesis of TDI-induced 

asthma is necessary for prevention and treatment.  

MicroRNAs (miRNAs) are short single stranded RNAs that negatively regulate gene 

expression by inhibiting mRNA translation or by degrading mRNA targets. Altered 

miRNA levels have a regulatory role in biological processes including stress 

response and inflammation. Several miRNAs have already been identified in the 

disease pathogenesis of asthma (11-13). One particular miRNA of interest is miR-

155, yet contradictory findings regarding its expression in airway samples and role in 

inflammatory response in mouse models (13, 14) have been reported. Recently it 

was demonstrated that miR-155 is a critical regulator for IL-33 signaling (15) and 

affects innate lymphoid cell type 2 (ILC2) expression (15-17). While Johansson and 

Zhu showed that miR-155 expression regulates ILC2 expansion and function (15, 

16), Knolle et al. showed that ILC2-intrinsic miR-155 expression is required to 

prevent apoptosis of ILC2 (17). Zhu and colleagues found that ILC2 frequencies in 

peripheral blood positively correlated with miR-155 expression in nasal mucosa of 



patients with allergic rhinitis. MiR-155 agomir administration did not only upregulate 

ILC2 numbers, it also promoted allergic symptoms and type 2 cytokine production in 

their allergic rhinitis mouse model (16). ILC, the innate counterpart of T helper cells, 

are present in mucosal tissues and produce cytokines upon activation by alarmins 

(e.g. IL-33 and TSLP (thymic stromal lymphopoietin)) released by damaged 

epithelium. The importance of ILC2 has been investigated in several human studies 

and mouse models of atopic asthma (18, 19), but little is known about this cell 

population in isocyanate-induced asthma. Previously it was shown that dermal 

exposure to TDI increases miR-155 expression in mouse parotid draining lymph 

nodes (LN) (20). However, whether miR-155 and ILCs contribute to airway 

responses towards isocyanates remains to be elucidated. 

In this paper we used a mouse model of TDI-induced asthma to investigate changes 

in ILC and T cell subsets upon isocyanate exposure. The presence of ILC2 was 

examined in bronchial biopsies of TDI-induced asthmatic patients. In addition, we 

exposed miR-155 knockout (KO) and wild-type (WT) mice to TDI to investigate 

whether miR-155 contributes to isocyanate-induced airway inflammation and 

hyperresponsiveness.   



METHODS 

Murine experiments 

Mice: 

Male B6.Cg-Mir155tm1.1Rsky/J mice (n=6-10 per group, 5-8 weeks old) were 

purchased from Jackson Laboratories (Bar Harbor, ME, USA) and bred at Charles 

River (France). Male C57BL/6J wild-type mice were obtained from Charles River. 

The experimental protocol was approved by the Animal Ethical Committee of the 

Faculty of Medicine and Health Sciences (Ghent University (ECD 16/34)) and was 

carried out in accordance with institutional guidelines for animal care. 

 

Exposure protocol: 

On day 1 and 8, mice were dermally sensitized on the dorsum of both ears to 20 µl 

of  2% TDI (v/v) dissolved in vehicle (a mixture of acetone and olive oil; AOO, ratio 

2:3) or sole vehicle. On day 15, 22 and 29, isoflurane-anaesthetized mice were 

challenged (oropharyngeal administration) with 20 µl 0.01% TDI or vehicle (AOO 

ratio 1:4). On day 31, the animals were euthanized (exposure protocol adapted from 

De Vooght et al. (21)) (Fig. 1A). The AOO/AOO control group (also called vehicle 

group) was neither sensitized nor challenged with TDI, while the TDI/TDI group 

received TDI both dermally and oropharyngeally. Also an AOO/TDI group receiving 

no sensitization but only TDI oropharygeally was included in the experiments. 

Toluene 2,4-diisocyanate, acetone and olive oil were purchased from Sigma-Aldrich.  

 

Bronchoalveolar lavage and tissue harvest: 

Bronchoalveolar lavage was performed and cell counts were measured as previously 

described. Lungs and auricular lymph nodes were harvested and single cell 

suspensions were prepared (19).  

 

Flow cytometry: 

All staining procedures were performed in PBS without Ca2+ and Mg2+ containing 5 

mM EDTA and 1% BSA. BAL cells were preincubated with FcR blocking antibody 

(anti-CD16/CD32, clone 2.4G2). Cells were stained with a combination of anti-mouse 

fluorochrome-conjugated monoclonal antibodies against: CD3 (145-2C11), CD5 (53-

7.3), CD4 (GK1.5), CD45 (30-F11), CD11b (M1/70), CD11c (N418), CD45R (RA3-



6B2), CD90.2 (30-H12), Ly6G (1A8), Siglec-F (E50-2440), NK1.1(PK136), 

KLRG1(2F1/KLRG1), Ly-6G/Ly-6C(Gr-1)(RB6-8C5), FcεRIα(MAR-1), 

CD127(A7R34) and TCR-β (H57-597). For cytoplasmatic IFN-γ (XMG1.2), IL-13 

(eBio13A), IL-17 (17B7) or matched isotype staining, cells were stimulated with 

ionomycin and phorbol 12-myristate 13-acetate, supplemented with brefeldin A and 

monensin at 37°C for 4 hours. Cell subsets were analyzed using an LSR Fortessa 

cytometer and FlowJo software. CD45+ and CD45- lung cells were sorted (>95% 

purity, data not shown) using an OctoMACS separator and CD45 microbeads 

(Miltenyi Biotec).  

 

Protein measurements: 

Blood was collected from the retro-orbital plexus and centrifuged (10 min, 2500 rpm) 

for the isolation of serum. Total IgE measurement (BD OptEIA set mouse IgE) on 

serum was performed. IL-13, IL-33, IL-1 and CCL5 levels were determined by 

ELISA (R&D systems) in supernatants of LN cultures, in total lung homogenate and 

BAL supernatants respectively (see Online repository material for details on sample 

preparation). 

 

qRT-PCR: 

RNA was extracted using the miRNeasy mini kit (Qiagen) and cDNA was prepared 

with the miScript II RT kit. miR-155 expression was determined with the miScript 

System (Qiagen) on a LightCycler 96 detection system (Roche) and normalized 

based on the expression of SNORD68 and SNORD95. The expression of mouse IL-

33 and HPRT was analysed with TaqMan Gene Expression assays.  

 

Histology: 

To quantify eosinophils and goblet cells, lung sections were stained with Congo Red 

or periodic acid-Schiff (PAS) staining respectively. Quantitative measurements were 

performed on an Axio Imager running AxioVision software. Hematoxylin/eosin 

staining was executed according to standard protocols (22, 23). 

 

 

 



 

Airway Hyperresponsiveness: 

48 hours after the last instillation, airway hyperresponsiveness was measured as 

previously described (19). A “snapshot perturbation” maneuver was imposed to 

measure the resistance (R) of the whole respiratory system.   

 

Analysis on human samples: 

Study population: 

Patient characteristics can be found in Table I. Bronchial biopsies from 9 nonatopic 

subjects, non-smokers, with TDI-induced occupational asthma exposed to TDI at 

work were studied. Biopsies from 7 subjects were taken at time of diagnosis, 2-22 

days after their last TDI exposure. Biopsies from 2 subjects were taken six months 

after cessation of exposure to TDI. From 1 patient, biopsies were obtained both at 

time of diagnosis and at six months after the last TDI exposure. The study 

conformed to the declaration of Helsinki, and informed written consent was obtained 

from each subject. 

 

Human sample processing and immunohistochemistry: 

Biopsies were processed as previously described (24, 25). ILC2 were detected with 

specific antibodies anti-CD3 and anti-GATA3 (see Online repository material). 

Sections were counterstained with hematoxylin. The number of positive cells was 

counted in the submucosal area up to 100 µm below the basement membrane. 

Positively stained cells were expressed as the number of cells per mm2 of examined 

area. 

 

In vitro human bronchial epithelial cell culture: 

Primary normal human bronchial epithelial cells (HBEC) were purchased from Lonza 

and primary HBEC were in-house isolated (see Online repository material) from lung 

resection specimens from 3 different never-smoking donors obtained at the 

Department of Respiratory Medicine, Ghent University Hospital. Cells were grown in 

air-liquid interface (ALI) culture and on day 26 (donors) and 29 (Lonza), cells were 

exposed for 25 min to TDI (predissolved in ethylene glycol dimethyl ether (EGDME)) 

or to vehicle (1/50  EGDME in HBSS) on the apical side of the culture. Cells were 

harvested for RNA extraction and supernatant was collected 6h post exposure.  



 

 

Protein measurements and qRT-PCR: 

Please see Online repository material for protein measurements. Human IL-33 and 

TSLP mRNA levels and reference genes HPRT1 and RPL13A were measured in 

HBEC with Bio-Rad PrimePCR SYBR Green Assays. miR-155/RNU48 cDNA was 

obtained with the TaqMan MicroRNA Reverse Transcription Kit (Thermofisher 

Scientific). LC480 Probes Master (Roche) and Taqman microRNA assay primers 

were used for the PCR reactions. 

 

Data analysis: 

Statistical analysis was performed with SPSS, version 25.0. Non-parametric tests 

(Kruskal-Wallis and Mann-Whitney-U) were used to compare different groups, 

according to the standard statistical criteria. Values were reported as mean ± SD. P-

values < 0.05 (*) were considered as statistically significant.  



RESULTS  

Isocyanate exposure in mice induces a predominant type 2 airway inflammation  

To investigate the inflammatory responses towards TDI, mice were twice dermally 

sensitized, followed by oropharyngeal challenges on days 15, 22 and 29 (Fig. 1A). A 

mixture of acetone and olive oil (AOO) was used as a vehicle to dissolve TDI, 

leading to three groups: AOO/AOO; AOO/TDI (only TDI airway challenge) and 

TDI/TDI (dermal and airway TDI challenge). Mice exposed to TDI/TDI had higher 

numbers of total cells and eosinophils in BAL compared to mice exposed to vehicle 

(Fig. 1B,C), which was also confirmed by flow cytometry (data not shown). Mice 

exposed to TDI/TDI also displayed higher number of CD4+ T cells and ILCs (Fig. 

1D,E). To distinguish the T-helper cell subsets as well as the three ILC subsets (IFN-

γ-producing ILC1, IL-13-producing ILC2 and IL-17-producing ILC3 (26)), BAL cells 

were stimulated with PMA/ionomycin to measure intracellular cytokine production 

(gating strategy see Fig. 1F). All examined T cell and ILC subpopulations were 

elevated after TDI/TDI exposure, with a predominant increase in IL-13+ CD4+ Th2 

cells and IL-13+ ILC2s (Fig. 1G,H). The increase in ILC2 and ILC1/3 was confirmed 

in an independent experiment via alternative gating with CD127 and KLRG1 (Suppl. 

Fig. S1A-C). Both %ILC2 as well as %Th2 cells were significantly positively 

correlated with the % eosinophils in BAL (Suppl. Fig. 1D,E). Also %ILC1 and %Th1 

cells were positively correlated with eosinophils, but less pronounced (data not 

shown). Regarding neutrophils, no significant correlations with Th subsets or ILC 

subsets could be demonstrated (data not shown). In the AOO/TDI group, most 

inflammatory markers tended to be intermediate between the fully challenged group 

(TDI/TDI) and the vehicle-exposed group.  

In lung tissue, TDI exposure increased the numbers of peribronchial eosinophils and 

airway goblet cells (Fig. 1I-L). ILC numbers in lung single cell suspensions did not 

significantly change upon TDI exposure (Suppl. Fig. S1F). 

 

GATA3+CD3- cells are present in bronchial biopsies of isocyanate-induced asthma 

patients 

Since the presence of ILC2s had not yet been reported within the context of 

isocyanate-induced asthma, we wanted to evaluate whether ILC2 are also present in 

airway samples of TDI-exposed human subjects. Therefore we performed an 

immunohistochemical double staining for GATA3 (expressed both in ILC2 and Th2 



cells) and CD3 (specific for T cells) to identify putative ILC2s in precious bronchial 

biopsies from patients diagnosed with isocyanate-induced asthma (n=9). In biopsies 

taken at the time of diagnosis of TDI-induced asthma (within 2-22 days after the last 

TDI exposure), GATA3+CD3- cells -compatible with ILC2s- were detected in the 

airway submucosa in 5 out of 7 patients (Fig. 2A,B). High numbers of CD3+ cells 

were present in biopsies (Fig. 2C). We found a weakly significant, positive correlation 

between eosinophils and the number of CD3+ cells (Rs:0.6727, P:0.039) (Suppl. Fig. 

S1G), but not with the number of GATA3+CD3- cells (putative ILC2, data not shown). 

This however does not exclude an association between ILC2 and eosinophils in the 

biopsies, since both the number of identified cells as well as the number of samples 

was too low to have sufficient power. Remarkably, GATA3+CD3-cells could not be 

demonstrated in biopsies from patients (n=3) after cessation of TDI exposure for at 

least 6 months. In the patient from whom specimens were available at both time 

points, GATA3+ CD3- cells, presumably ILC2, were detectable at diagnosis, but 

disappeared after 6 months cessation of TDI exposure, while the number of 

eosinophils was reduced (data not shown). 

 

Isocyanate exposure can induce IL-33 expression in human bronchial epithelial cells 

and in the mouse model of TDI asthma 

Given that IL-33 and TSLP activate ILC2s and promote the induction of type 2 

responses, we next assessed whether TDI can activate the epithelial-driven IL-33 or 

TSLP pathway by exposing human bronchial epithelial cells (HBEC) to TDI or 

vehicle. TDI exposure in commercially available HBEC (Lonza) led to an induction of 

IL-33 mRNA levels compared to vehicle control (Fig. 3A). Of note, in in-house 

isolated primary HBEC, the impact of TDI on IL-33 expression varied between 

donors, as a similar trend was only observed for 1 out of 3 donors (Suppl. Fig. S2A). 

TSLP mRNA expression either tended to increase or decrease upon TDI exposure, 

depending on the donor (data not shown). 

In murine lung homogenates, IL-33 protein levels were significantly increased in 

response to TDI (Fig. 3B). Murine IL-33 mRNA was predominantly expressed in the 

non-hematopoietic (CD45-) compartment and was highest in the AOO/TDI group 

(Fig. 3C). 

 

 



Isocyanate-induced airway inflammation is miR-155 dependent in mice  

Since proliferation of lymphoid cells –including ILC2s- is regulated by miR-155, a 

microRNA associated with allergic airway inflammation (15), we evaluated the 

expression of miR-155 in HBEC and in the mouse model of TDI asthma. TDI 

exposure in commercially available HBEC (Lonza) led to an induction of miR-155 

expression compared to vehicle control (Fig. 3D), yet this was less apparent using 

the in-house generated HBEC (Suppl. Fig. S2B). In mice, the expression of miR-155 

was detectable in total lung tissue and significantly higher in the hematopoietic 

(CD45+) cell compartment compared to the non-hematopoietic (CD45-) cell 

compartment (Fig. 3E,F). Interestingly, in the CD45- cell compartment miR-155 

expression was upregulated in the AOO/TDI group. However, the miR-155 

expression in total lung tissue or LN was not significantly modulated by TDI exposure 

(Fig. 3E and Suppl. Fig. S2C).  Considering the controversial role of miR-155 in 

asthma, we subsequently evaluated the effect of miR-155 deficiency on isocyanate-

induced type 2 airway inflammation by exposing miR-155 KO and WT mice to 

vehicle or TDI. The number of TDI-induced eosinophils was strongly reduced in miR-

155 KO mice (Fig. 4A). Moreover, the TDI-induced increase in total and IL-13 

producing CD4+ T cells and ILCs was significantly attenuated in TDI-exposed miR-

155 KO mice compared to WT mice (Fig. 4B-E). An attenuated increase in the 

number of IFN-γ or IL-17 producing T-cells and IL-17 producing ILCs was also 

observed (Suppl. Fig. S2D-G).  

In lung tissue, peribronchovascular eosinophilic inflammation and airway goblet cell 

metaplasia upon TDI exposure were significantly reduced in miR-155 KO mice 

compared to the corresponding WT mice (Fig. 4F,G). The TDI-induced inflammation 

in lung tissue in WT mice, visualized by Haematoxylin & Eosin-staining, was absent 

in miR-155 KO mice (Fig. 4H).  

 

TDI-induced pulmonary expression of IL-33 and IL-1, but not CCL5, is miR-155 

dependent 

To unravel the mechanisms underlying the attenuated inflammatory responses in the 

TDI- exposed miR-155 KO mice, we investigated the expression of the type 2-

promoting cytokine IL-33, IL-1 as well as the T-cell and eosinophil-attracting 

chemokine CCL5 (27, 28). The TDI-induced IL-33 protein levels in lung homogenate 



of miR-155 KO mice were significantly decreased compared to the corresponding 

TDI-exposed WT mice after combined dermal sensitization and airway challenge 

(TDI/TDI), but not after sole airway challenge (AOO/TDI) (Fig. 5A). IL-1 protein 

levels also increased upon TDI exposure compared to vehicle. Notably, IL-1 

expression was miR-155 dependent after AOO/TDI exposure, but not after TDI/TDI 

exposure (Fig. 5B).  

TDI-exposure also resulted in a strong increase of CCL5 expression compared to the 

vehicle group, which was however similar in WT and miR-155 KO mice (Fig. 5C). 

 

Role of miR-155 in TDI-induced type 2 responses in lymph nodes and in serum IgE 

To investigate type 2 responses in the lymph nodes, auricular lymph nodes of WT 

and miR-155 KO mice were isolated and stimulated with concanavalin A; next IL-13 

protein levels were measured in the cell culture supernatant. The auricular lymph 

nodes from TDI/TDI-exposed mice showed a significant increase in IL-13, with no 

difference between the genotypes (Fig. 5D). TDI exposure led to elevated total IgE 

levels in serum in WT mice, which was absent in the miR-155 KO mice (Fig. 5E).  

 

Effect of miR-155 deficiency on isocyanate-induced airway hyperresponsiveness 

To investigate the involvement of miR-155 in TDI-induced airway 

hyperresponsiveness, the peak resistance in response to increasing concentrations 

of carbachol was measured in WT and miR-155 KO mice. In the TDI/TDI group, 

there was a nominal increase in the peak resistance in WT mice, compared to the 

vehicle-exposed control group and the AOO/TDI group. TDI exposure in the miR-155 

KO mice did not increase airway responsiveness (Fig. 5F).  



DISCUSSION  

Diisocyanates such as TDI are highly reactive chemicals that can induce asthma 

upon workplace exposures. In this study, we show a predominant type 2 

inflammatory response with higher numbers of Th2 cells and ILC2s in a mouse TDI 

asthma model, that is dependent on miR-155. We also demonstrated the presence 

of GATA3+CD3- cells, presumably ILC2, in human bronchial biopsies of subjects with 

diisocyanate-induced asthma. Together, these findings suggest a role for ILC2 and 

miR-155 in the pathogenesis of occupational asthma due to LMW agents such as 

TDI. 

Our TDI asthma model shows increased eosinophils in BAL, which is in line with  

observations in sputum (29) and in bronchial biopsies (30) of human subjects. The 

inflammatory response was further characterized by an increase in CD4+ T cells and 

all CD4+ T helper cell subpopulations (IFN-γ+, IL-13+  and IL-17+), as previously 

described in other TDI mouse models (7, 21, 31-36). The prominent increase in IL-

13-producing T-cells, together with peribronchial eosinophilia and goblet cells, point 

to a predominant Th2 type response. We moreover confirmed sensitization by 

elevated total IgE in serum after TDI exposure (6, 7, 21, 32, 33, 37) 

The novelty of our research data is that we demonstrated that TDI challenge 

following dermal sensitization led to a rise in ILC subsets: IFN-γ+ ILC1, IL-13+ ILC2, 

and IL-17+ ILC3. Especially the ILC2 subset, which is known to induce inflammation 

in mouse airways upon allergen exposure (26), was expanded. In atopic asthmatics, 

increased numbers of ILC2 have been detected in sputum, BAL and blood (18, 38). 

The altered ILC2 numbers in BAL of our murine TDI asthma model suggest that this 

cell population might also be involved in the pathogenesis of chemical-induced 

asthma. To address this hypothesis, we used very unique and scarce biopsy 

specimens from patients with TDI-induced asthma (30) to investigate the presence of 

ILC2. While increased numbers of activated T cells and Th2 cytokines have already 

been found in diisocyanate asthmatic individuals (39-41), we are the first to detect 

GATA3+CD3- cells, possibly ILC2s, in bronchial biopsies from  patients suffering from 

diisocyanate-induced asthma. In the 3 biopsies of subjects who stopped exposure to 

TDI for 6 months, these GATA3+CD3- cells could not be detected. Although no firm 

conclusions can be drawn from this observative finding, it is noteworthy that 

cessation of TDI exposure also decreased eosinophil numbers (30).  



To investigate if IL-33, a known activator of Th2 and ILC2 (15), is an important factor 

upstream of TDI-induced asthma, we exposed HBEC to a non-cytotoxic TDI 

concentration and observed an increased IL-33 mRNA expression in commercial 

HBEC compared with the control group, which corresponds with an earlier report 

(42). The response was however donor-dependent in in-house generated HBEC. 

Interestingly, IL-33 protein levels were detectable in our TDI asthma model and 

increased upon TDI exposure. However, it is challenging to draw firm conclusions, 

since IL-33 is processed into mature bioactive forms and because IL-33 also acts as 

a chromatin-associated nuclear factor, besides its proinflammatory cytokine function 

(43, 44). Thus, high levels of nuclear IL-33 do not necessarily mean that there is high 

secretion of bioactive IL-33. It remains to be investigated whether the interaction 

between epithelial cells and inflammatory cells in our model could further perpetuate 

epithelial IL-33 release. It has been demonstrated before that exposing airway 

epithelial cells (A549) to TDI or a co-culture of A549 with blood neutrophils led to 

enhanced expression and release of epithelial folliculin, which is important in airway 

epithelial integrity and survival (45). A similar mechanism exists for aspirin-

exacerbated respiratory disease, where persistent airway inflammation is associated 

with eosinophil-epithelium interactions (46).  

Previous studies have shown that also the type 2 promoting cytokine TSLP is 

increased upon TDI exposure and that blocking TSLP can reduce TDI-inflammation 

in murine models (47, 48). In our HBEC experiments, the TDI-induced changes in 

TSLP expression were however donor-dependent.  

 

MiR-155 is a microRNA involved in regulating ILC2 function and allergic upper and 

lower airway inflammation (15, 16, 49, 50). In WT mice, miR-155 was mostly 

expressed in hematopoietic cells, consistent with previous reports (17, 51). We did 

not observe TDI-induced expression of miR-155 in lungs or LN of WT mice, which is 

in contrast to earlier findings of increased miR-155 expression in LN of TDI exposed 

mice (20), possibly due to the timing or experimental setup. Also, the vehicle itself, a 

mixture of acetone and olive oil, may have already modulated miR-155 expression 

compared to e.g. untreated control mice. Notably miR-155 was detectable in non-

hematopoietic cells in mice (highest in AOO/TDI group) and increased in TDI-

exposed human bronchial epithelial cells (Fig. 3D), suggesting it could play a role in 

epithelial responses to TDI. 



Okoye and colleagues reported that miR-155 is required for Th cell recruitment (52). 

Correspondingly, we observed that a deficiency in miR-155 attenuated the TDI-

induced increase in Th cells. We also observed that TDI exposure induces CCL5, an 

important T-cell chemoattractant, in a miR-155 independent way, which corresponds 

with data from Matheson et al. (53)  and Malmhäll et al. (54). 

Our data correspond with the work from Johansson and Knolle et al., who 

demonstrated that miR-155 deficient mice exhibit reduced ILC2 levels as well as IL-

33 (15, 17). The IL-33 expression seems not only a main driver of Th2 and ILC2 

responses upon allergen exposure, but also upon isocyanate exposure. How miR-

155 actually affects IL-33 expression remains to be further investigated, but is likely 

due to an indirect effect, since miRNAs downregulate the expression of specific 

targets. 

Oxidative stress and Transient Receptor Potential Melastatin 8 (TRPM8) activation 

are potential mechanisms leading to IL-33 release following TDI exposure (42, 55, 

56). Additionally, several damage-associated molecular patterns (DAMPs) and pro-

inflammatory cytokines that could be associated with IL-33 release have been found 

in models of TDI exposure, e.g. HMGB1, IL-6, TNF, IL-1 and IL-1β (28, 48, 57-

59). We investigated the potential implication of IL-1R signalling, since this pathway -  

especially through IL-1 -  is upstream of IL-33 in a model of allergic airway 

inflammation (60). Interestingly, prevention of IL-1 signalling can attenuate AHR and 

inflammation in a TDI model (28). We demonstrated (similar to IL-33) an increase in 

IL-1 protein levels upon TDI exposure. Notably, whereas TDI-induced IL-33 

expression was decreased in miR-155 deficient mice significantly for TDI/TDI (trend 

for AOO/TDI), IL-1 expression was only miR-155 dependent after AOO/TDI 

exposure, suggesting a transient miR-155 dependency. 

Whereas miR-155 deficiency clearly affected the number of IL-13 producing T-cells 

and ILC2s in the alveolar compartment of TDI-exposed mice, lymph node cells 

derived from TDI-exposed WT and miR-155 KO mice produced similar amounts of 

IL-13 protein. This is in agreement with a previous report, where ILC2s from miR-155 

KO mice did not show a lower IL-13 production (17). It remains unclear from our 

experiments whether lung ILC2s in miR-155 KO mice are intrinsically affected, or 

(partly) because of defects in local Th2 cell activation. Total IgE levels were reduced 

in miR-155 KO mice, which is probably due to an intrinsic defect of miR-155 deficient 



B cells in class switching (61) or due to the lower number of ILC2 present. Indeed, 

ILC2 influence B cell proliferation and antibody production (62). 

TDI/TDI exposures tended to induce AHR. This response was completely abolished 

in the miR-155 KO mice, which corresponds with the attenuated inflammation, 

including reduced numbers of IL-13+ T-cells and ILC2. This observation is in 

agreement with Idzko et al., who showed that microRNA-155 has a proinflammatory 

role in models of OVA and HDM-induced allergic airway inflammation and AHR (50).  

A limitation of our study is that we used constitutive miR-155 KO mice, which may 

have some developmental differences impacting our data. In the future, an 

oropharyngeally delivered antagomir against miR-155 could be tested. Yet, in an 

OVA-induced model of asthma, uptake of this antagomir was efficient in myeloid 

cells but not in lymphocytes and therefore failed to reduce airway inflammation (51). 

Another limitation is that we had no access to fresh samples of isocyanate asthmatic 

patients to perform flow cytometric analysis for ILC subsets.  

In conclusion, this study demonstrates for the first time that innate lymphoid cells are 

involved in TDI-induced occupational asthma. We could identify GATA3+CD3- cells, 

presumably ILC2, in bronchial tissue of occupational asthma patients. Finally, we 

showed that miR-155 has a type 2 proinflammatory role in a mouse model of TDI 

asthma. Together, these data suggest that ILC2 and miR-155 could be promising 

therapeutic targets for subjects with occupational asthma due to LMW agents such 

as TDI.  
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Table I 

Characteristics of study population (n = 9) 
 

  
  Median (IQR) 

Number 9 

Gender ratio (male/female) 6/3 

Age (years) 39 (26,5-47) 

Atopy (yes/no) 0/9 

Onset of Asthma (years) 2 (0,5-4,5) 

Exposure to TDI (years) 2,5 (2,25-25,75) 

Interval between last exposure and biopsy (days) 21 (10,5-26) 

  



FIGURE LEGENDS 

FIGURE 1: Exposure to TDI induces airway inflammation. WT mice were 

exposed to AOO/AOO (white bars), AOO/TDI (light gray bars), or TDI/TDI (dark gray 

bars). Exposure protocol in days (A), total BAL cells (B) and eosinophils (C), B and 

C were determined by cytospin. BAL cells were stimulated for 4 hours with phorbol 

12-myristate 13-acetate/ionomycin + protein transport inhibitors, intracellular labeled 

and analyzed using flow cytometry (D-H) CD4+ T cells (CD45+, CD11c-, CD11b-, 

CD45R-, CD5+, TCRβ+, CD4+) (D), ILCs (CD45+, Lin- (CD11c-, CD11b-, CD45R-, 

CD5-, TCRβ-), CD90+) (E), gating strategy (F), IFN-γ+ (IL-17-) CD4+ T cells, IL13+ 

CD4+ T cells, IL-17+ (IFN-γ-) CD4+ T cells (G), IFN-γ expressing ILC, IL-13+ ILC and 

IL-17+ ILC (H) are shown. Data are representative of three independent experiments. 

Representative photomicrographs and quantification of congo-red stained 

peribronchial eosinophils (I-J) and periodic acid–Schiff–stained mucus-producing 

goblet cells (K-L). Airways with a perimeter of the basement membrane larger than 

800 µm and smaller than 2000 µm are included. Data are expressed as mean ± SD. 

N =8. * P <0.05. 

FIGURE 2: Immunohistochemical detection of GATA3+CD3- cells and T cells in 

human lung tissue. GATA3 in pink, CD3 in brown. Upper panel: representative 

examples of immunohistochemistry for GATA3+CD3- cells (in pink, black arrow) and 

CD3+ cells (in brown) at time of diagnosis in the submucosa of an asthmatic subject 

who developed asthma symptoms after a period of exposure to TDI. Original 

magnification 63X. Lower panel: GATA3+CD3+ cell (blue arrow) and GATA3+CD3- 

cell (black arrow), CD3+ cells in brown. Original magnification 100X. (A). 

Quantification of GATA3+CD3- cells (B) and CD3+ cells (C) at time of diagnosis and 6 

months post exposure. Data are expressed as mean ± SD. N =3-6. 

FIGURE 3: IL-33 and miR-155 expression following TDI exposure. IL-33 mRNA 

levels were determined in vitro in HBEC (N=3 technical replicates) and normalized to 

HPRT and RPL13A. Vehicle=1/50 EGDME in HBSS (A) Murine IL-33 protein levels 

in lung homogenate (B) and IL-33 mRNA expression in murine sorted CD45+ and 

CD45- lung cells normalized to HPRT (C). miR-155/RNU48 mRNA expression in 

HBEC (D), miR-155/snorD95 mRNA expression in murine whole lung tissue (E) miR-

155 mRNA expression in murine sorted CD45+ and CD45- lung cells normalized to 



SNORD95 and SNORD68 (F). Murine data are expressed as mean ± SD. N =6-8. * 

P <0.05. 

FIGURE 4: Absence of miR-155 attenuates TDI-induced inflammation. WT and 

miR-155 KO mice were exposed to AOO/AOO (white bars), AOO/TDI (light gray 

bars) or TDI/TDI (dark gray bars). Total eosinophils (A) were determined on 

cytospin. BAL cells were stimulated for 4 hours with phorbol 12-myristate 13-

acetate/ionomycin + protein transport inhibitors, intracellular labeled and analyzed 

using flow cytometry (B-E). CD4+ T cells (CD45+, CD11c-, CD11b-, CD45R-, CD5+, 

TCRβ+, CD4+) (B), IL13+ CD4+ T cells (C), ILCs (CD45+, Lin- (CD11c-, CD11b-, 

CD45R-, CD5-, TCRβ-), CD3-, CD4-, CD90+) (D), IL-13+ ILC (E). Data are 

representative of at least two independent experiments and expressed as mean ± 

SD. N =8. * P <0.05. Quantification of congo-red stained peribronchial eosinophils 

(F) periodic acid–Schiff–stained mucus-producing goblet cells (G) and 

photomicrographs of Haematoxylin & Eosin-stained lung tissue (H). Data are 

combined of two independent experiments and represented as mean ± SD. N =13-

18. * P <0.05 

FIGURE 5: Role of miR-155 in TDI-induced type 2 responses and airway 

hyperresponsiveness. Murine IL-33 protein levels in whole lung homogenate (A), 

IL-1α protein levels in whole lung homogenate (B), CCL5 protein levels in BAL (C). 

IL-13 protein levels in the supernatants of concanavaline A stimulated auricular LNs 

(D) and IgE titers in serum (E) were determined by ELISA. Airway resistance (R) of 

WT mice (black & blue lines) or miR-155 KO mice (red lines) exposed to TDI or 

vehicle (AOO/AOO) was measured in response to increasing doses of carbachol (F). 

No R-measurement in AOO/TDI miR-155 KO group due to limited availability of miR-

155 KO mice. Data of A-D are expressed as mean ± SD, data of (E) are expressed 

as mean ± SEM, N =8-10. * P <0.05 
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SUPPLEMENTARY INFORMATION 

Online Repository text 

Auricular LN cell culture: 

LN single cells were cultured in culture medium (RPMI 1640 supplemented with 10% 

fetal calf serum, 2 mM L-glutamine, 0.05 mM 2-mercaptoethanol, 100 U/ml penicillin, 

100 mg/ml streptomycin) supplemented with  concanavaline A (2,5 µg/ml) (concA) or 



dehydrated culture medium (DCM) in round bottom, 96-well plates and incubated in 

a humidified 37°C incubator with 5% CO2. After 46h, supernatants were harvested 

for protein measurements. 

 

Preparation for protein measurements: 

The superior lobe of the right lung was snap frozen in liquid nitrogen and stored at -

80°C until analysis. Lobes were transferred into T-PER extraction buffer (Protease 

inhibitor cocktail kit added) and homogenized on ice using TissueRuptor. 

Homogenates were centrifuged (5 min, 10 000 g at 4°C) and the middle layer was 

transferred to micro centrifuge tubes. Total protein concentration was measured 

using the Pierce BCA protein Assay kit and samples were diluted with T-PER buffer 

to obtain the same concentration. Lung homogenate samples were stored at -80°C 

until further analysis. All reagents were purchased from Thermo Scientific. Blood was 

collected from the retro-orbital plexus and centrifuged (10 min, 2500 rpm) for the 

isolation of serum. Serum samples were stored at -20°C. 

 

In vitro human bronchial epithelial cell culture: 

HBEC were isolated from bronchial ring tissue resected at maximum distance of the 

tumor lesion and cultured at the air-liquid (ALI) interface (protocol based on E1, E2). 

Briefly, bronchi were cleared from excess connective tissue and washed three times 

with cold medium (MEM (Sigma), supplemented with L-glutamine (2 mM, Gibco) and 

1% Pen/Strep (10000 U/ml, Gibco)), followed by digestion with 1mg/ml pronase E 

(Sigma, P5147) in medium. After 20h digestion on a rotor at 4°C, pronase E was 

inactivated with 10% FCS. Epithelial cells were scraped from the inner surface of the 

bronchi with a scalpel. After resuspension with a 19G needle, cells were centrifuged 

for 5min at 20°C, 220 g and collected in warm BEGM (Lonza, CC-3170), 

supplemented with 1% Pen/Strep. Fibroblasts were removed by plating the cell 

suspension in a dish without collagen coating for 3h and collecting the supernatant. 

Next, HBEC were seeded in a collagen I coated dish, incubated at 37°C (5% CO2) 

and the medium was changed every second day until a confluency of 80%. P1 cells 

were seeded in Nunclon Delta coated flasks for further expansion until final seeding 

in inserts of 12-well plates for ALI cell culture. 

Written informed consents were obtained from all donors, according to the protocol 

approved by the medical ethical committee of Ghent University Hospital (2016/0132).  



IL-33 and TSLP levels were determined by ELISA (R&D systems) in apical 

supernatants of the ALI cultures from HBEC. 

 

Human sample processing and immunohistochemistry: 

Biopsies were processed as previously described (E3, E4). For the detection of ILC2, 

sections were processed for IHC analysis (Leica BOND Max) with specific antibodies 

anti-CD3 and anti-GATA3. Briefly, the first immunohistochemical staining was 

performed by quenching endogenous peroxidase using an enzyme-blocking reagent 

(BOND Polymer Refine Detection Kit) for 10 minutes. Next, sections were treated 

with the primary antibody (anti-CD3) for 60 minutes. Sections were then incubated 

with a dextran polymer reagent containing secondary antibodies, peroxidase 

molecules and non-permeable chromogen DAB (BOND Polymer Refine Detection 

Kit). Consecutively, in the second immunohistochemical staining sections were 

treated with the primary antibody (anti-GATA3) for 60 minutes. Sections were then 

incubated a biotin-free, polymeric alkaline phosphatase (AP)-linker antibody 

conjugate system (Bond Polymer Refine Red Detection). Finally, sections were 

counterstained with hematoxylin. Digital images from the stained sections were 

obtained with a light microscope (Leica DM 2000) connected to a video recorder and 

a computerized image analysis system (Leica LAS w3.8, Leica Application Suite). 

The number of positive cells was counted in the submucosal area up to 100 µm 

below the basement membrane. Positively stained cells were expressed as the 

number of cells per mm2 of examined area.  
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FIGURE LEGENDS 

FIGURE S1: Gating strategy of live, CD45+,CD5-NK1.1-TCRb-GR-1-FcεRI-CD11b-

CD11c-CD45R-,CD3-CD4-, CD90+, CD127+, KLRG1+ lung ILC2  (A). C57BL6 mice 

were intratracheally exposed to TDI or AOO on day 1, 8 and 15. Endpoints were 

performed on day 17. CD127+KLRG1+ ILC2 in BAL (B) CD127+KLRG1- ILC (C). 

Murine data are expressed as mean ± SD. N =6-8. * P <0.05. Spearman correlation 

between inflammatory cells in the mouse model: %eosinophils and %ILC2 (D), 

%eosinophils and %Th2 (E). C57BL6 mice were dermally exposed to TDI or AOO on 

day 1, 8 and intratracheally on day 15, 22 and 29. Endpoints were performed on day 

31. After 4h stimulation, lung ILCs were gated as live, CD45+CD5-TCRb-CD11b-

CD11c-CD45R-CD90+ and discriminated based on IL-13, IL-17 and IFN-γ (F). 

Results are expressed as mean ± SD. n = 7-8 mice per group. * P < 0.05. 

Correlation between eosinophils and CD3+ cells in submucosa from human bronchial 

biopsies (G). 

 
FIGURE S2: A-B mRNA expression in HBEC from never-smoking donors (n=3), ALI 

cultures from HBEC were exposed to 0.5mM TDI or vehicle for 25min. The dots 

represent the average of 2-4 technical replicates. IL-33/HPRT+RPL13A mRNA 

expression (A), miR-155/RNU48 expression (B). miR-155/snorD95 mRNA levels in 

murine auricular LN (C). C57BL6 mice were dermally exposed to TDI or AOO on day 

1, 8 and intratracheally on day 15, 22, 29. Endpoints were performed on day 31. 

IFN+ γ CD4+ T cells (D) IFN-γ expressing ILC (E) IL-17+ CD4+ T cells (F) and IL-17+ 

ILC (G) in BAL. Data are expressed as mean ± SD. N =8. * P <0.05. 

  



 

  



 


